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Abstract—When users move in a physical space (e.g., an urban
space), they would have some records called mobility records
(e.g., trajectories) generated by devices such as mobile phones
and GPS devices. Naturally, mobility records capture essential
information of how users work, live and entertain in their daily
lives, and therefore, they have been used in a wide range of tasks
such as user profile inference, mobility prediction and traffic
management. In this paper, we expand this line of research by
investigating the problem of inferring user socioeconomic statuses
(such as prices of users’ living houses as a proxy of users’
socioeconomic statuses) based on their mobility records, which
can potentially be used in real-life applications such as the car
loan business. For this task, we propose a socioeconomic-aware
deep model called DeepSEI. The DeepSEI model incorporates
two networks called deep network and recurrent network, which
extract the features of the mobility records from three aspects,
namely spatiality, temporality and activity, one at a coarse
level and the other at a detailed level. We conduct extensive
experiments on real mobility records data, POI data and house
prices data. The results verify that the DeepSEI model achieves
superior performance than existing studies. All datasets used in
this paper will be made publicly available.

Index Terms—GPS trajectory data; human mobility; deep
neural networks

I. INTRODUCTION

With the rapid development of GPS devices and mobile
technologies, recent years have witnessed an unprecedented
growth in mobility data. This big amount of data has at-
tracted many research efforts to acquire knowledge of human
mobility behaviors. More specifically, extensive studies have
been conducted on profiling users from mobility records. For
example, it has been explored to infer users’ demographic
attributes from their check-ins [1], users’ ethics and gender
from their photo sharing data with geo tags [2], passengers’
employment statuses from their smart card data [3], [4], and
users’ demographics from their trajectories [5], etc. While
these techniques are extensive and have some merits, there still
exist some scenarios that have been overlooked and/or cannot
be adequately solved by them. For example, in some real-
life applications such as car loans, quite many demographic
attributes such as the age and gender of the users are already
provided by users. What is demanded for these applications
is to infer the socioeconomic statuses of users, e.g., the prices
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of their living houses and whether they will pay their monthly
loans on time, etc. Yet these have been mostly overlooked by
existing studies [1], [2], [3], [4], [5].

In this paper, we aim to infer users’ socioeconomic statuses
from their mobility records. This is motivated by two con-
siderations. First, users’ socioeconomic statuses are closely
linked to where they live or work, both of which could be
potentially reflected by their mobility records. Second, users’
socioeconomic statuses can sometimes be disclosed by the
places they visit, especially those they visit during weekends,
and the patterns of their visits at these places, which again
could be revealed by their mobility records. Here, a user’s
socioeconomic status can refer to many different indicators,
such as the price range of the user’s living house [6], [4],
the likelihood that the user will pay a car loan installment on
time, or the user’s income, etc. Constrained by the availability
of datasets and privacy concerns, in this paper, we infer the
home location of a user based on his/her mobility records
(i.e., Geolife) and then crawl the house price data from the
Web based on the home location as the proxy of the user’s
socioeconomic status. Since both the mobility records data and
the house price data are publicly available, no privacy will be
broken in this study.

Specifically, we propose a socioeconomic-aware deep model
called DeepSEI for user socioeconomic status inference. In
DeepSEI, it first preprocesses the users’ mobility records
data by filtering the noises, extracting the stay points, and
inferring the activities behind the extracted stay points. Then, it
incorporates two networks, namely deep network and recurrent
network, to capture users’ activities data at a coarse level and
at a detailed level, respectively, for this task. The deep network
aims to capture some statistics based on users’ mobility
records (i.e., at a coarse level) and the recurrent network
aims to capture the sequential patterns behind users’ mobility
records (i.e., at a detailed level).

The deep network takes as inputs three features of users’
mobility records data, including spatiality diversity, temporal-
ity diversity and activity diversity. Spatiality diversity captures
the spatial information in the territory where users’ daily
activities are conducted. Temporality diversity captures the
temporal regularity of users, which can potentially help to
indicate their professions, e.g., self-employers tend to stay at



home and only go out occasionally, while some users working
at a government department would commute more regularly.
Activity diversity reveals the diversity of movements among
users’ activity locations, which can reflect users’ socioeco-
nomic statuses as shown in [6], [5].

The recurrent network takes as inputs the sequences of ac-
tivities of users, where each activity has spatial, temporal and
semantic features. The spatial and temporal features indicate
where and when the activities are conducted and the semantic
features, e.g., working or shopping, indicate the activity types
and provide the context for understanding users’ daily rou-
tines. We adopt a hierarchical LSTM with two levels for the
recurrent network. The activities within a day are modeled in
the low-level LSTM and the activities within days are modeled
in the high-level LSTM. The hierarchical LSTM brings two
advantages. First, users’ sequences of mobility records are
generally long, and the hierarchical structure can reduce the
length and alleviate the issue of degraded performance for
handling long sequences. Second, users’ mobility records are
organized on a daily basis, and the two-level LSTMs preserve
the users’ periodic information. We note that other sequence
encoder models, e.g., Transformer, are also applicable for the
task, and we leave it a future work to explore these models.

The novelty of the paper is two-fold. First, the problem
setting is new. To our best knowledge, there are no existing
studies that take GPS mobility records as inputs and infer
users’ socioeconomic statuses. Second, our method is distinc-
tive from existing ones in that it explores a data-driven solution
with two well-designed neural networks for the inference task.
In summary, we make the following contributions:
• We study a novel problem of inferring users’ socioeconomic

statuses based on their GPS mobility records. This problem
is new and has practical applications in real life (e.g., risk
assessment for car loan applications/managements).

• We propose a novel learning framework called DeepSEI
for the problem, which is a supervised deep learning model
and incorporates two neural networks (i.e., deep network and
recurrent network) to capture the features from three aspects
of users’ mobility records, i.e., spatiality, temporality and
activity, at both coarse and detailed levels.

• We conduct the experiments on real-world GPS trajectory,
POI and house price datasets, which are publicly available,
and the results demonstrate our method’s superior perfor-
mance for the task, e.g., our method outperforms the best
baseline by at least 15% in terms of prediction accuracy.

II. RELATED WORK

A. Human Mobility Analytics

Earlier studies [7], [8], [9] examine the relationships be-
tween human travel behaviors with their profiles, including
gender [8], [9], age [9], [8], race [8], employment status and
income [7]. For example, Hanson et al. [7] suggest that an
individual’s employment status and income have a positive
impact on his/her travel frequency. Kwan et al. [8] reveal that
men are more inclined to visit recreation places than women.

The earlier studies make a great impact on the subsequent
research; however, the works are conducted on travel survey
data, which needs to be collected manually, and consequently
the findings are mainly based on a small number of volunteers
for a short period of time.

With the proliferation of communication techniques, mobile
phone data becomes a new data source for conducting this type
of research. Mobile phone data is collected from cellphone
users, where the mobile phone records track a user’s id, the
user’s location when he/she makes a phone call (the location
is reported as the longitude and latitude), and the timestamp
at which the phone call starts. With the mobile phone data,
Xu et al. [10] present a home-based approach to analyze
human activities in Shenzhen. They find that people who live
in the northern part of Shenzhen are generally with a small
activity space around their homes, and people with a larger
activity space mainly live in the southern part, where the
economy is highly developed. Further, they propose an ana-
lytical framework for understanding the relationships between
human mobility and socioeconomic status [6]. Specifically,
they take two cities, Singapore and Boston, for case studies,
and reveal an interesting finding that the richer tend to travel
shorter in Singapore but longer in Boston. Blumenstock et
al. [11] predict individual socioeconomic status (e.g., poverty
and wealth levels) with users’ survey data collected from their
historical mobile calls. In addition, Huang et al. [12] explore
possible factors that may influence individual daily activities,
and the results demonstrate that socioeconomic status, urban
spatial structure, work place and region geographical layout
all play a critical role. Kelly et al. [13] use the location data
collected from mobile sensors to identify some predictability
patterns that can be linked to users’ demographics such as age,
gender and social meeting contacts, etc. Ding et al. [4] estimate
users’ socioeconomic statuses from their subway smart card
data, which records users’ pick-up and drop-off locations at
subway stations for each trip. Different from these studies, we
propose to infer users’ socioeconomic statuses with their GPS
trajectories and develop a deep learning based model called
DeepSEI.

B. Mobility and/or Temporality Prediction

We review the existing studies regarding the prediction
task, where mobility and temporality information is involved.
For mobility prediction, with the proliferation of location-
based services, it has been a hot research topic in recent
years. Mobility prediction aims at predicting the next location
for the user, while POI recommendation aims to predict the
following several locations that the user will visit. Earlier
studies [14], [15] for the next location prediction task are
based on exacting the historical user mobility patterns. In
recent years, many learning-based methods [16], [17], [18]
are proposed to model the users’ mobility patterns in a data-
driven manner. For example, DeepMove [18] is an attentional
recurrent neural network based model to capture the user’s
periodical patterns for his/her mobility prediction. Chen et
al. [16] propose a context-aware deep model called DeepJMT



to jointly predict where and when a user will visit next,
which considers both users’ visit histories and the spatial and
user contexts of the visits. For temporality prediction, many
existing studies [19], [20] adopt temporal point process to
model the time as a sequence of discrete random events, and
then jointly predict the next event type and timestamp. Our
problem differs from these studies mainly in that we aim to
predict users’ socioeconomic statuses but not their mobility
and/or temporality.

III. PROBLEM DESCRIPTION

In this paper, we aim to infer users’ socioeconomic statuses
from their mobility records. Here, a user’s socioeconomic
status can refer to many different indicators, such as the price
range of the user’s living house [6], [4], the likelihood that
the user will pay a car loan installment on time, or the user’s
income, etc. Constrained by the availability of datasets and
privacy concerns, in this paper, we infer the home location
of a user based on his/her mobility records (i.e., Geolife) and
then crawl the house price data from the Web based on the
home location as the indicator of the user’s socioeconomic
status. Many studies [6], [4], [21] show that the house price
data reflects users’ socioeconomic statuses well. For example,
in [6], it reveals that a user’s house price is strongly correlated
with a user’s monthly income. More specifically, we model the
socioeconomic status inference task as a multi-class classifi-
cation task, where each class corresponds to a range of house
prices. In experiments, we vary the number of classes from 2
to 5. Since both the mobility records data and the house price
data are publicly available, no privacy will be broken.

IV. METHODOLOGY

A. Overview

To predict users’ socioeconomic statues with their mobility
records, we propose a novel socioeconomic-aware deep model
called DeepSEI. DeepSEI model consists of three com-
ponents, including data preprocessing (Section IV-B), deep
network (Section IV-C) and recurrent network (Section IV-D).
The data preprocessing component is to filter the noises in
the mobility records data, extract the stay points from the
mobility records, and further infer the activities behind the
extracted stay points. The deep network aims to capture some
statistics based on users’ mobility records (i.e., at a coarse
level) and the recurrent network aims to capture the sequential
patterns behind users’ mobility records (i.e., at a detailed
level). Therefore, the two networks collaboratively capture rich
information from users’ mobility records data.

For the deep network, it is designed to quantify three
important aspects of users’ mobility characteristics, namely
spatiality, temporality and activity. For spatiality, we consider
users’ radii of gyration extracted from the their trajectories,
which describe the typical spatial range of users’ activities.
For temporality, it is intuitive that people with different profes-
sions (e.g., government officials or IT engineers) would travel
with different temporal patterns/regularities of activities. We
explore an entropy-based temporality indicator for capturing
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the regularity of users’ activities. For activity, it is intuitive
that an individual’s daily activities could be used for inferring
the user’s socioeconomic status, e.g., rich people have diverse
daily activities and travel more places in general, and thus we
use an entropy-based activity indicator to capture that aspect.

For the recurrent network, we focus on the sequential
activity data extracted from users’ mobility records, where
each activity involves spatial, temporal, and semantic features.
In particular, spatial and temporal features record where and
when the user’s activities are conducted, respectively. Semantic
feature provides the context for understanding the intended ac-
tivities that a user conducts, e.g., working or dining. Intuitively,
the contextual semantics would be useful to profile the user’s
socioeconomic status, e.g., if a user visits the fast food restau-
rants frequently and rarely visits recreational venues such as
fitness centers, he may have poor socioeconomic conditions.
We adopt a hierarchical LSTM for the recurrent network since
the hierarchical structure can reduce the mobility sequence
length, and extract periodic mobility behaviours of human.

We concatenate the outputs of the two networks into a long
vector, which is further fed into a fully connected layer to
produce the predicted users’ statuses. We train the DeepSEI
model in a supervised manner (Section IV-E). Figure 1 illus-
trates the overall framework of DeepSEI. Next, we discuss
the detailed designs of each component.

B. Data Preprocessing

The raw mobility records data corresponds to a sequence of
sampled locations with time stamps. The data may involve
noises (e.g., the GPS noises) and lack of semantics (e.g.,
activities). The data preprocessing component is to preprocess
the data by (1) filtering the noises, (2) extracting the stay
points (which indicate activity behaviors), and (3) inferring
the semantics of the stay points (e.g., the categories of the
POIs that are probably visited at the extracted stay points).
Specifically, data preprocssing involves three steps, namely
Noise Filtering, Stay Point Detection, and Activity Inference.

Noise Filtering. For mobility records data (or trajectory data),
we first perform trajectory segmentation by dividing the data
into one-week trajectory instances, which are used to train and
test the model. Within each segmented trajectory, we filter
those noisy data points and then detect those stay points,
where a stay point corresponds to one activity such as working,
shopping, and staying at home. In particular, trajectory data
usually contains noises due to the way how it is collected, e.g.,
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a sampled location might be several hundred meters away from
a true location. Such noisy points will affect the quality of stay
point detection. We adopt a heuristic-based approach proposed
in [22] for filtering noisy points in trajectories. It sequentially
calculates the traveling speed for each point in a trajectory
based on its precursor and itself. If the speed is larger than
a threshold, the current examined point is removed from the
point sequence.
Stay Point Detection. Based on the cleaned trajectories, we
extract all stay points from them. Specifically, we adopt the
stay point detection algorithm proposed in [23] for detecting
stay points from trajectories. The algorithm first checks if
the distance between an anchor point and its successors in a
trajectory is larger than a given threshold Sd. It then calculates
the duration between the anchor point and the last successor
within Sd. If the duration is larger than a temporal threshold
St, a stay point is detected, and the anchor point moves to the
next point after the current stay point. Otherwise, the anchor
point moves forward by one. This process is repeated until the
anchor point moves to the end of the sequence so that all stay
points in a trajectory are extracted.
Activity Inference. Based on the stay points extracted from
users’ mobility records, we infer the most relevant activity for
each stay point. For each stay point, we check 8 neighbouring
grid cells of the grid cell, in which the stay point is located.
Then, we infer the activity associated with the stay point to
be the most frequent POI category among those POIs in the
8 neighbouring grid cells. In addition, if no POI is found
within the grids, we infer the activity to be a special tag
called “other”. In Figure 2, we illustrate the inferred activity
distribution for Beijing in terms of training and testing (details
will be presented in the sequel). We notice some other methods
such as Markov based inference models [24], [25], [26] are
also applicable for the task of activity inference. Since the POI
categories are in the form of discrete tokens, we obtain the
activity vectors by embedding their tokens as one-hot vectors.

C. Deep Network

One previous study [6] reveals that users’ socioeconomic
statuses can be reflected by their mobility patterns/statistics.
Inspired by this, we adopt some indicators that are computed

from users’ mobility records for our task. These indicators
capture the spatiality, temporality and activity aspects of users’
mobility patterns. We embed indicators via a deep network and
concatenate the embeddings for our task.
Spatiality Diversity. To capture the mobility features from
users’ trajectory data, we consider radius of gyration, which
is widely used as a spatial indicator to capture users’ mo-
bility characteristics [6], [5]. Given a trajectory data T =<
(p1, t1), (p2, t2), ..., (pn, tn) >, where pi and ti (1 ≤ i ≤ n)
denote the location pi of a moving object at time ti. The radius
of gyration Rg is defined as follows.

Rg =

√∑n
i=1(pi − pc)2

n
, pc =

∑n
i=1 pi
n

, (1)

where pc denotes the center of the sampled locations. The ra-
tionale of radius of gyration is to capture the spatial dispersion
of a user’ movement. Intuitively, a small radius indicates that
the user’s activities are mainly in a small area.
Temporality Diversity. We consider the feature in temporal
aspect. It is intuitive that people with similar professions would
travel similarly in terms of temporality. For example, office
staff would commute between home and office regularly on
weekdays while self-employers would mainly stay at home
and only go out occasionally. In addition, some users (e.g.,
those work at a government department) would commute more
regularly than others (those work at an IT company). These
temporality patterns embed rich information that could be used
for inferring socioeconomic statuses of users. Therefore, we
explore a temporality indicator called temporality diversity.

Given a user’s stay points extracted from his/her mobility
records (s1,∆t1), (s2,∆t2), ..., (sn,∆tn), where s and ∆t
denote the stay location and the duration of staying at that
location, respectively. By following [27], [6], we calculate
the temporality diversity via cross-entropy, which captures the
duration distribution among those stay locations. Let pti =

∆ti∑n
j=1 ∆tj

denote the proportion of stay duration at location
si, the temporality diversity (TD) is defined as follows:

TD = −
n∑

i=1

pti log(pti), (2)

where
∑n

i=1 pti = 1. The rationale of the indicator is to
consider the human daily regularity. For example, for some
people (e.g., IT programmers), whose daily lives are mainly
concentrated at home and work places, they would have a high
regularity reflected as a low cross-entropy value.
Activity Diversity. Previous studies [28], [6] exhibit that the
diversity of individual daily activities has a strong correla-
tion with their socioeconomic statuses. Intuitively, a well-
developed city (e.g., Beijing in our study) provides many
facilities for residents to conducct various activities, and richer
people tend to have a higher activity diversity in daily lives,
e.g., their jobs are generally with higher diversification.

Inspired by this, we explore the features for describing
activity diversity in the model. Given a sequence of user’s
stay points (s1,∆t1), (s2,∆t2), ..., (sn,∆tn), where each
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stay location s is potentially associated with an activity such
as working. We define two consecutive stay locations in a trip
e = (si−1, si)(0 < i ≤ n) as a source and destination pair. We
let E denote the set of all possible source and destination pairs
extracted from the whole stay points, where the direction of
movement could be ignored. For each pair e ∈ E, p(e) denotes
the proportion of observing the movement corresponding
to the pair e wrt the total number of movements (i.e.,
n− 1) in the records. For example, given a user’s stay points
(a,∆t1), (b,∆t2), (c,∆t3), (d,∆t4), (c,∆t5), (b,∆t6), (a,∆t7),
there are 6 movements in the records and 3 source and
destination pairs in E without considering direction, i.e.,
(a, b), (b, c) and (c, d). For the pair e = (a, b), p(e) is
calculated as p(e) = 2

6 = 0.33. Note that
∑

e∈E p(e) = 1,
and we define the Activity Diversity (AD) via cross-entropy
as follows:

AD = −
∑
e∈E

p(e) log(p(e)). (3)

The rationale is that for a user, whose trips are concentrated
on a few locations, he/she would have a high cross-entropy
value.

Network Architecture. Figure 3 illustrates the architecture
of the deep network. To feed the above features into the
DeepSEI model, we first tokenize them. In particular, spa-
tiality diversity, temporality diversity and activity diversity
are naturally in the form of continuous float values, we
tokenize them by partitioning the range with a predefined
granularity, e.g., we partition the range 0.09-8,143.3 (resp. 0-
5.73 and 0.02-5.36) of spatiality diversity (resp. temporality
diversity and activity diversity) with a 100 (resp. 0.5 and 0.5)
granularity, and thus we obtain 82 (resp. 11 and 10) tokens.

After obtaining the tokens of above features, we then
embed each feature via an embedding layer, and denote the
embedded features (i.e., 32-dimensional vectors) to be fed to
the deep network for spatiality diversity, temporality diversity
and activity diversity as xds,xdt and xda, respectively. We
concatenate the embedded feature vectors, and thus obtain a
long vector with dimension 32∗3, which will be further used.
To facilitate the training process, we pre-train the tokens of
spatiality diversity, temporality diversity and activity diversity
via Skip-Gram model [29]. After pre-training, the tokens with
similar context (e.g., two tokens correspond to two similar
values for a feature) will be embedded into similar vectors
in a latent space. We then use the pre-trained vectors to

Embedding layers  
(spatiality, temporality, activity)

high-level

low-level
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Fig. 4. The architecture of recurrent network.

initialize the embedding layer of the deep network, and those
embeddings can further be optimized with the model training.

D. Recurrent Network

The recurrent network aims to capture sequential patterns
of users’ activities, each of which involves spatial, temporal
and semantic features. We first embed these features of each
activity and then feed the embeddings to a hierarchical LSTM
network. Compared with the implementation of vanilla RNN
based models, hierarchical LSTM is more capable of capturing
the sequential and periodic information from users’ trajectory
data.
Spatial Embedding. We partition the geographical space into
grid cells with the grid size of 200m × 200m, and map the
GPS coordinates of the stay point behind an activity to a
grid cell. Naturally, the mapped grid cell, which encompasses
the coordinates of the stay point, can represent its spatial
information. We then obtain the spatial embedding of the
activity as a one-hot vector, which will be further fed into
the hierarchical LSTM.
Temporal Embedding. For the extracted stay point behind
each activity, it is associated with a timestamp to record the
starting time of the stay. We take the timestamp as a temporal
feature, and embed it into the model. By following the previous
study [1], we split a one-week trajectory data into two parts,
i.e., one for weekdays and one for weekends. For each part,
we further split a day into 24 hourly time bins, and therefore
we obtain 24 ∗ 2 = 48 time bins in total to tokenize the
temporal feature, where we take the temporality for weekdays
and weekends differently. This is because users generally have
different lifestyles for these two parts. Similarly, we obtain the
temporality vectors by embedding their time bins as one-hot
vectors, and fed them into the hierarchical LSTM.
Semantic Embedding. The semantic feature of an activity
corresponds to the POI we have inferred for a stay point (de-
tails in Section IV-B). We obtain the embeddings of semantic
features (i.e., POIs) as one-hot vectors.
Network Architecture. Figure 4 illustrates the architecture of
the recurrent network, which is implemented with a hierar-
chical LSTM, where the LSTM units [30] are employed for
both low-level and high-level structures. Take an one-week



trajectory for example, the low-level LSTM is to capture the
intra-transitions within a day and the high-level LSTM is to
capture the inter-transitions across days.

For the low-level LSTM, we denote the embeddings used
in the recurrent network for spatiality, temporality and activity
as xrs, xrt and xra. Then, we concatenate those embeddings
at each time step i, denoted by xrs

i ⊕ xrt
i ⊕ xra

i , and feed the
concatenation to low-level LSTM to obtain the hidden state
hL
i at this time step.

hL
i = LSTML(xrs

i ⊕ xrt
i ⊕ xra

i , hL
i−1). (4)

We take the last hidden state within the day denoted by hL
n , as

a latent representation for capturing the intra-transitions within
the day, and it is further fed into high-level LSTM.

hH
j = LSTMH(hL

n , h
H
j−1), (5)

where hH
j denotes the high-level hidden state at the jth day,

which is then fed to initialize the hidden state hL
0 for the low-

level LSTM. We feed the last hidden state at the high-level
LSTM (i.e., suppose hH

7 is the last day of a week) into a fully
connected layer as the output of recurrent network.

With the hierarchical LSTM, it brings two advantages. First,
compared with vanilla RNN, modeling the user’s mobility
records in a hierarchical way is able to reduce the sequence
length, where the low-level LSTM is for handling the records
within a day and the high-level LSTM is for handling the
records across days. The design helps alleviate the issue
of degraded model performance for modeling long mobility
sequences. Second, the hierarchical structure is able to capture
both sequential and periodic information, where the low-
level LSTM captures the sequential transitions from users’
mobility records, and high-level LSTM preserves the periodic
information on a daily basis.

E. Jointly Training deep and recurrent networks

We jointly train the two networks (i.e., deep and recurrent
networks) for predicting users’ socioeconomic statuses. Fol-
lowing the previous study [1], we partition the whole Geo-
life dataset into one-week trajectories. We randomly sample
70% for training (i.e., 1,360 one-week trajectories) and the
remaining for testing (i.e., 584 one-week trajectories). For each
trajectory, it is associated a ground truth label indicating the
user’s socioeconomic status.

To train the DeepSEI, we first pre-train the deep and
recurrent networks separately and then jointly train them
together. During the pre-training, it provides a warm-start for
the two networks and boosts the convergence in the joint
training. Specifically, we generate 50 episodes and use the
deep or recurrent network separately for the classification
task with cross entropy loss. During the joint training, we
also generate 50 episodes and concatenate the outputs by the
two networks as a long vector, which is further fed into a
fully connected layer with the softmax function with the cross
entropy loss. We adopt the Adam stochastic gradient descent
to optimize the network parameters. The training details are
reported in Section V-B.

V. EXPERIMENTS

A. Experimental Setup

Datasets. The dataset used in this work contains three parts.
The first part is the mobility data (i.e., GPS trajectories)
generated by users. The second part is POI data, which are
used to capture users’ activity features. The third part is house
price data, which is used to construct labels to reflect the
socioeconomic statuses of users for evaluation. We collect
the last two parts of data through web map services and web
crawlers, respectively.
1) Mobility Data. The mobility records correspond to a
sequence of time-stamped locations sampled by the GPS
device. For each record, it captures the location (i.e., latitude
and longitude) of a user at a timestamp. We use the Geolife
dataset [31] for the mobility data. It contains 24,876,978
records in a period of five years, where the data is distributed in
over 30 cities of China, and the majority part was generated in
Beijing. We note that the dataset is publicly available without
any personal information, avoiding possible privacy concerns.
2) POI Data. We collect Point-of-Interest (POI) data through
Amap Map API [32], which contains 156,653 records in
Beijing. For each POI record, it provides many attributes,
including venue name, category, location with latitude and
longitude information. We consider 11 major POI categories
in this work, namely working, residence, food and drink, at-
tractions, community, shopping, education, hospitals, lodging,
traffic, and recreation. We collect the POI data between 2011
and 2012, corresponding to the period of the mobility records
on Geolife.
3) House Price Data. We collect the house price data by
crawling online housing agents, i.e., Lianjia [33], which is the
largest Chinese real-estate brokerage company that provides
a comprehensive coverage of housing properties. We crawl
8,124 residential sale prices in Beijing. For each transaction,
it records the residential name, sale price, floor size and
residential address with latitude and longitude information
we collected from Amap Map [32]. Here, the house prices
correspond to the average prices with the unit of rmb/m2. By
following [6], [4], we use the house price data to indicate
users’ socioeconomic statuses. In particular, the range of
collected average house price is from 10,588 to 113,224 in
Beijing. To study multiple-class classification, we take the
binary classification for example. We define a binary label
with the median threshold of the range (i.e., 10,588+113,224

2 =
61, 891), we set label 0 for the users, whose house prices are
smaller than the threshold; label 1 otherwise. Here, we find
users’ home locations by following the previous studies [34],
[6], i.e., the home of a user is inferred as the location visited
the most frequently during nighttime from 22:00 to 07:00.
Tasks. We explore two tasks with the DeepSEI model. One
is classification. We consider the number of classes from 2 to
5 by evenly partitioning the house price range to 2 - 5 equal
intervals, as the corresponding socioeconomic class labels. The
other is clustering. We collect the concatenated embeddings
outputted by deep network and recurrent network, where



the embeddings are learnt from the previous classification
task, and thus they have incorporated socioeconomic context
from the users. We then explore k-means clustering on the
concatenated embeddings, and vary the k from 2 to 5. The
class labels from 2 to 5 in the classification task are re-used
as the ground truth for evaluating the clustering with k from
2 to 5, respectively.
Baselines. The following baselines are adapted.
• SES [6]. The study verified users’ socioeconomic statuses
can be reflected by their mobility patterns. Inspired by the
study, we extract the mobility indicators including (1) radius of
gyration, (2) number of activity locations, (3) activity entropy,
(4) travel diversity, (5) K-radius of gyration, (6) unicity. Based
on the features, we explore the following 10 classifiers for the
classification task, including RBFSVM, LinearSVM, Logistic
Regression, K-Nearest Neighbors (KNN), Decision Tree, Ran-
dom Forest, Bayes, Adaboost, Gradient Boost and XGBoost.
We grid search the best hyperparameters of the classifiers
based on a development set. Among them, we select two
classifiers with the best effectiveness, namely SES (Random
Forest) and SES (XGBoost). In addition, we concatenate those
mobility indicators as a vector for the clustering task.
• DIF [5]. The study proposes a framework of inferring users’
demographics (e.g., gender, martial status or age) from their
trajectories and geographical context. Other than the feature
(1), (2), (3), (4), (6) studied in SES, it further incorporates
(7) number of unique stay points, (8) centroid of stay points,
(9) number of travels and (10) land use. Similarly, we explore
the aforementioned 10 classifiers based on the features, and
DIF (Random Forest) and DIF (XGBoost) dominate others in
terms of the effectiveness. For clustering, we concatenate these
features as the input.
• L2P [1]. The study investigates users’ demographics and
proposes a general location-to-profile (L2P) framework. L2P
extracts the features from users’ check-ins in terms of spatial-
ity, temporality, and location knowledge (e.g., POI categories).
It constructs a three-way tensor based on the extracted features,
and adopts Tucker tensor decomposition to obtain a feature
vector for each user. Based on the feature vectors, we still
explore the aforementioned 10 classifiers, and L2P (Random
Forest) and L2P (XGBoost) stand out. Those feature vectors
can also be used for clustering.
Evaluation Metrics. Our paper involves two tasks: classifi-
cation and clustering. For classification, we use the F1-score
and accuracy as the evaluation metric by following [1]. For
clustering, we use the metrics of Adjusted Rand Index (ARI)
and Adjusted Mutual Information (AMI). They measure the
correlation between the clustered result and the ground truth.
Their values lie in the range of [−1, 1], and we normalize their
values in [0, 1] for the ease of reading, where a higher ARI or
AMI indicates a better result.
Parameter Setting. Our DeepSEI model consists of deep
network and recurrent network. For deep network, we embed
the features of (1) spatiality diversity, (2) temporality diversity
and (3) activity diversity into 32-dimensional vectors, and
concatenate them as a long vector with dimension 32∗3 = 96

as the output. For recurrent network, we embed the features
of (4) spatiality, (5) temporality and (6) activity into 32-
dimensional vectors, and feed the concatenation as a 96-
dimensional vector (i.e., 32 ∗ 3 = 96), into a hierarchical
LSTM. To implement the hierarchical LSTM, we use a low-
level LSTM with 64 hidden units and a high-level LSTM
with 64 hidden units. The hidden vector at the last step of
the high-level LSTM is then fed into a fully connected layer
with 32 neurons. Thus, the output of recurrent network is a
32-dimensional vector. Further, the outputs of deep network
and recurrent network are concatenated as a 128-dimensional
vector (i.e., 96+32 = 128), which is fed into a fully connected
layer with the softmax function as the activation function. We
train the networks with Adam stochastic gradient descent and
an initial learning rate of 0.001.

The default parameters of stay point radius Sd and stay
point duration St are set to 100m and 60 min, respectively.
Here, we vary the parameter Sd from 100m to 300m, since
the results are similar and we use the setting of Sd = 100m.
The setting of the parameter St will be studied in experiments.
For extracting the above features from (1) to (6), the following
parameters are involved: the cell size for the feature (4), the
spatiality granularity for the feature (1) and the temporality
granularity and activity granularity for the feature (2,3). We
use the settings of cell size, spatiality granularity, temporality
granularity and activity granularity as 200m, 100, 0.5 and
0.5, respectively. The results of their effects are shown in
experiments.
Evaluation Platform. We implement DeepSEI and other
baselines in Python 3.6 and Tensorflow 2.3.0. The experiments
are conducted on a desktop with Intel(R) Core(TM) i5-8265U
CPU @ 1.60GHz 1.80 GHz and a 32 GB memory. The codes
can be downloaded via the link 1.

B. Experimental Results

(1) Effectiveness evaluation (comparison with different
classifiers). We compare the DeepSEI model with the base-
lines. In Table I, we report their effectiveness in terms of F1-
score(%) and accuracy(%) for classification and ARI(%) and
AMI(%) for clustering. Overall, our DeepSEI model consis-
tently outperforms the baselines, e.g., in binary classification
and clustering, it outperforms the best baseline (i.e., DIF) by
22.5% and 37.9%, respectively. The reasons are mainly two-
fold: 1) the DeepSEI model is with more comprehensive
features to infer the users’ socioeconomic statuses from three
aspects, i.e., spatiality, temporality and activity; 2) the two
networks that are incorporated by DeepSEI can capture the
features effectively as they capture the features at both the
coarse and detailed levels.
(2) Ablation study. We conduct an ablation study to evaluate
the effect of each network (i.e., deep network or recurrent net-
work) and features in the DeepSEI model, and the comparing
results are reported in Table II. Overall, we can see all these
networks and features contribute to the final result. For the

1https://github.com/zhengwang125/DeepSEI

https://github.com/zhengwang125/DeepSEI


TABLE I
EFFECTIVENESS EVALUATION, WHERE 2-5 DENOTE THE # OF CLASSES OR CLUSTERS.

Method Classification Clustering

Metric 2 3 4 5 2 3 4 5
F1 Acc F1 Acc F1 Acc F1 Acc ARI AMI ARI AMI ARI AMI ARI AMI

SES(RF) 59.3 68.9 42.4 44.6 32.1 37.2 25.6 30.3 49.7 50.2 50.0 50.2 49.4 50.7 49.9 50.3SES(XGBoost) 60.0 60.3 41.0 43.3 32.6 36.4 23.9 27.8
DIF(RF) 69.1 69.3 57.1 59.6 50.3 53.0 47.1 48.5 60.3 56.9 57.8 55.9 54.0 52.6 50.7 50.4DIF(XGBoost) 70.3 75.5 61.6 63.5 52.6 55.7 42.6 49.3
L2P(RF) 67.8 72.2 55.2 56.4 46.1 48.2 41.5 44.3 56.6 55.5 53.8 53.4 51.2 50.8 49.7 50.0L2P(XGBoost) 68.2 67.8 58.4 59.3 47.7 49.0 40.2 42.2
DeepSEI 86.1 90.2 80.2 80.4 63.9 64.2 53.3 58.8 83.2 77.5 80.9 71.9 70.6 70.3 69.2 64.4

TABLE II
ABLATION STUDY FOR DEEPSEI.

Method Classification Clustering
DeepSEI 86.1 83.2
w/o Deep Network 73.7 78.2
w/o Spatiality Diversity 78.8 80.0
w/o Temporality Diversity 82.5 81.9
w/o Activity Diversity 82.8 81.9
w/o Recurrent Network 33.4 60.4
w/o Spatial Feature 75.7 78.1
w/o Temporal Feature 82.8 80.5
w/o Semantic Feature 68.6 77.9

TABLE III
IMPACTS OF STAY POINT DURATION (MINS) FOR DEEPSEI.

Parameter 30 60 90 120 150
Classification 74.3 78.9 86.1 82.6 81.9
Clustering 80.9 81.9 83.2 81.9 81.8

recurrent Network, w/o Recurrent Network corresponding to
the case that only Deep Network is kept, the result performs
the worst with F1-score of 33.4% and ARI of 60.4%. This
is because it captures a sequence of users’ daily activities,
which is essential to infer users’ socioeconomic statuses. For
the deep network, we observe the spatiality diversity is with
the most effect, e.g., when the spatiality is removed, the F1-
score is 78.8, which drops by 9.3%. This is because users’
socioeconomic statuses are highly linked to the range of
their activity territory, which has been verified in previous
studies [6].
(3) Parameter study (varying stay point duration St). The
stay point duration parameter St controls the time threshold
of the stay point detection algorithm, where the points in a
trajectory will be merged as one stay point if the duration of
the first point (called anchor point) and the last point in the
trajectory is within St. We vary the St from 30 minutes to 150
minutes, and the results are reported in Table II. As expected,
with the increase of St, less stay points are detected, which
corresponds to less training and testing instances are generated.
We observe that our model performs the best when St is set
to 90 minutes with the F1-score of 86.1% and ARI of 83.2%.
This is because with a small St, the detected stay points cannot
accurately reflect the users’ activities, it falsely takes some
trivial behaviors such as “walking” as the users’ activities,
which prevents the model to learn useful information. With a
large St, many stay points cannot be detected, which causes
the model performance degrades as many features that are
associated with the stay points are missing.
(4) Parameter study (varying cell size). In Table IV, we

TABLE IV
IMPACTS OF CELL SIZE (M) FOR DEEPSEI.

Parameter 100 200 300 400 500
Classification 82.3 86.1 83.6 81.5 79.8
Clustering 82.0 83.2 81.2 80.5 79.4

TABLE V
IMPACTS OF SPATIALITY GRANULARITY FOR DEEPSEI.

Parameter 100 200 300 400 500
Classification 84.1 85.9 86.1 85.6 83.8
Clustering 82.1 81.9 83.2 82.7 82.0

study the effect of cell size by varying the size from 100
meters to 500 meters. Here, the effect of cell size is mainly in
two aspects: 1) for spatiality, each grids contains a set of stay
points; with a large size, more stay points will be indexed
to the same grid, which results many stay points share the
same mobility embedding; 2) for activity, we infer the activity
of a stay point using the POIs in 8 neighbouring grids of
the grid, where the stay point is located; then, a large cell
size, corresponds to a large grid, which takes more POIs into
consideration. Based on the results, we observe that the cell
size 200 meters fits our model best. With the smallest cell size
(100 meters), the model degrades. This is because a small cell
size generates more tokens, which makes the model difficult
to train. On the other hand, a large cell size causes a lower
resolution of the stay points, and overlooks the differences of
mobility features. In addition, as more POIs are considered in
a large grid, those POIs may generate noise to interfere with
POI inference and this is in line with our intuition.
(5) Parameter study (varying spatiality diversity granular-
ity). We study the effect of spatiality granularity in Table V.
We vary the granularity from 100 to 500, and report the
effectiveness in terms of classification and clustering. The
parameter captures the resolution of the spatial range of users’
daily activities. A smaller value provides a higher resolution
but incurs more tokens, which affects the model training. With
a larger value, the capability of model to distinguish different
spatial diversities will degrade. We set it to 300, which leads
to the best effectiveness.
(6) Parameter study (varying temporality and activity
diversity granularity). We study the effect of diversity granu-
larity for two entropy-based indicators, i.e., temporality diver-
sity and activity diversity. We vary the granularity parameter
from 0.1 to 0.9, and the results are reported in Table VI.
Temporality diversity and activity diversity are two features
with continuous numerical values, dividing their ranges with a
small granularity will generate too many tokens, and causes the



TABLE VI
IMPACTS OF TEMPORALITY AND ACTIVITY GRANULARITY FOR DEEPSEI.

Parameter 0.1 0.3 0.5 0.7 0.9
Classification 72.3 78.6 86.1 83.8 81.6
Clustering 80.4 81.5 83.2 81.8 80.8
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Fig. 5. Training cost on Geolife.

model difficult to learn the features; with a large granularity,
the capability of the model to identify the diversity from users’
mobility patterns will degrade, which is as expected. overall,
a moderate setting with the value of 0.5 provides the best
effectiveness.
(7) Training time. In Figure 5, we report the times and
the corresponding effectiveness with the default setup in
Section V-A. We generate 50 epochs for both pre-training
and training. We observe that the effectiveness improves
with the number of epochs and the corresponding training
time increases almost linearly. In pre-training, the recurrent
network takes more time because it has a more complex
network architecture (i.e., hierarchical LSTM). In training, the
DeepSEI model incorporates the two networks and obtains
a further improvement after 32 epochs. We observe that the
DeepSEI model converges after 41 epochs, and we use the
trained model for other experiments.
(8) Case study. We conduct a case study. We select four
cases for the study, where User 1 and 2 are identified as
the richer users in the same class 1, and User 3 and 4 are
identified as the poorer users in another class 2. In Figure 6,
we visualize the locations of their stay points on the map. In
Table VII, we list the features captured by the deep network
and recurrent network. We observe the following insights that
may explain the relationship between their mobility patterns
and socioeconomic statuses.
Insight 1: Richer users tend to travel shorter. In Table VII,
we observe the richer users (User 1 and User 2) are generally
with the smaller spatiality diversities (e.g., 9.62 and 5.52) than
poorer users. This insight is in line with the intuition from the
previous study [6], and the reason could be that rich people
are busy with work and have limited time for travelling.
Insight 2: Richer users are generally with lower temporal-

ity/activity diversity of daily activities. Temporality/Activity
diversity is an entropy-based feature to reveal the regularity of
users’ daily activities. In Table VII, we observe the regularity
of User 1 and User 2 are high, corresponding to the smaller
values. For example, in Figure 6, User 1 mainly commutes
between home (“residence” POI) and office (“working” POI)
regularly, and he/she is with the least temporality diversity
1.30. In contrast, the User 4 is irregular, e.g., he/she visits
many places instead of staying somewhere and working.
Insight 3: Richer users are with secure jobs. We infer the
users’ employment statuses based on the data extracted from
their stay points. We infer that User 1 is with a steady job
since he/she works (at 09:00 am - 05:00 pm) and stay homes
(at 05:00 pm - 07:00 am) regularly. In this situation, he/she
has a stable source of income (e.g., we infer that he/she may
be a faculty at an university based on the stay points on the
map), and the status is reflected on his/her house price data
accordingly.

VI. CONCLUSION

In this paper, we study user socioeconomic status inference,
and propose a novel socioeconomic-aware deep model called
DeepSEI for the task. DeepSEI incorporates two neural
networks, i.e., deep network and recurrent network. We extract
features from three aspects of users’ mobility records, namely
spatiality, temporality and activity, at the coarse and detailed
levels, and feed them to the two networks. We conduct
the experiments on Geolife dataset, POI dataset and house
price dataset, and the results show that the DeepSEI model
achieves a noticeable improvement over the baselines. In the
future, we plan to explore more mining and learning tasks
based on users’ mobility records, such as anomaly detection.
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