
Crafting Personalized Agents through Retrieval-Augmented Generation on
Editable Memory Graphs

Zheng Wang1, Zhongyang Li1, Zeren Jiang1, Dandan Tu1, Wei Shi1

1Huawei Technologies, Co., Ltd.
{wangzheng155,lizhongyang6,jiangzeren2,tudandan,w.shi}@huawei.com

Abstract

In the age of mobile internet, user data, often
referred to as memories, is continuously gen-
erated on personal devices. Effectively manag-
ing and utilizing this data to deliver services
to users is a compelling research topic. In
this paper, we introduce a novel task of craft-
ing personalized agents powered by large lan-
guage models (LLMs), which utilize a user’s
smartphone memories to enhance downstream
applications with advanced LLM capabilities.
To achieve this goal, we introduce EMG-RAG, a
solution that combines Retrieval-Augmented
Generation (RAG) techniques with an Editable
Memory Graph (EMG). This approach is fur-
ther optimized using Reinforcement Learning
to address three distinct challenges: data col-
lection, editability, and selectability. Extensive
experiments on a real-world dataset validate
the effectiveness of EMG-RAG, achieving an im-
provement of approximately 10% over the best
existing approach. Additionally, the personal-
ized agents have been transferred into a real
smartphone AI assistant, which leads to en-
hanced usability.

1 Introduction

In the era of mobile internet, personal information
is constantly being generated on smartphones. This
data, referred to as personal memories, is often
scattered across everyday conversations with AI
assistants (e.g., Apple’s Siri), or within a user’s
apps (e.g., screenshots), including emails, calen-
dars, location histories, travel activities, and more.
As a result, managing and utilizing these personal
memories to provide services for users becomes a
challenging yet attractive task. With the emergence
of advanced large language models (LLMs), new
opportunities arise to leverage their semantic un-
derstanding and reasoning capabilities to develop
personal LLM-driven AI assistants.

Motivated by this trend, we study the problem
of crafting personalized agents that enhance the AI

assistants with the capabilities of LLMs by lever-
aging users’ memories on smartphones. Unlike
existing personal LLM agents (Li et al., 2024b),
such as those designed for psychological counsel-
ing (Zhong et al., 2024), housekeeping (Han et al.,
2024), and medical assistance (Zhang et al., 2023a),
the personalized agents face unique challenges due
to practical scenarios and remains relatively unex-
plored in current methods.

These challenges can be summarized below.
(1) Data Collection: Personal memories should en-
compass valuable information about a user. Extract-
ing these memories from everyday trivial conver-
sations presents unique challenges in data collec-
tion, especially considering that existing datasets
like personalized chats sourced through crowd-
sourcing (Zhang et al., 2018) or psychological di-
alogues (Zhong et al., 2024) lack this property.
Moreover, constructing annotated data, such as QA
pairs, is essential for enabling effective training
of personalized agents. (2) Editability: Personal
memories are dynamic and continuously evolving,
requiring three types of editable operations: inser-
tion, deletion, and replacement. For example, 1)
insertion occurs when new memories are added;
2) deletion is necessary for time-sensitive memo-
ries, such as a hotel voucher that expires and needs
to be removed; 3) replacement is required when
an existing memory, such as a flight booking, un-
dergoes a change in departure time and needs up-
dating. Therefore, a carefully designed memory
data structure is essential to support this editability.
(3) Selectability: To enable the memory data ser-
vices for real-world applications, it often requires
querying a combination of multiple memories. For
example, in a QA scenario (illustrated in Table 1),
the AI assistant answering a question about “a sec-
retary’s boss’s flight departure time” needs several
memories: the secretary booked a flight to Ams-
terdam for her boss (M1); the flight’s number is
EK349 (M2); the departure time for EK349 is at

01:40 on 2024-05-12 (M4). To achieve this, one
intuitive approach is to use Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020) to find rel-
evant memories and form a context that is fed
into a LLM to generate answers. Here, we dis-
cuss two potential solutions and their limitations,
which motivate the proposed solution. 1) Needles
in a Haystack (NiaH) (Briakou et al., 2023): it
organizes all memories into a single context (the
“Haystack”) and inputs this into a LLM, relying on
the capability of a LLM itself to identify relevant
memories (the “Needles”) for generating an answer.
However, this method incurs significant overhead
by extending the LLM’s context window and intro-
duces noise from irrelevant memories, hindering
the LLM’s ability to generate accurate answers.
2) Advanced RAG (Wang et al., 2024; Ma et al.,
2023): many advanced RAG techniques still rely
on Top-K retrieval to identify relevant memories.
However, a fixed parameter K may limit the LLM’s
ability to uncover all relevant memories, especially
for the questions requiring diverse memory combi-
nations. Thus, an adaptive selection mechanism is
essential for the personalized applications.

To this end, we introduce a new solution called
EMG-RAG, which presents the first attempt of its
kind to address these challenges. We discuss the
solution along with the rationales behind it below.
For (1), we utilize a business dataset collected from
a real AI assistant, which includes daily conver-
sations with the assistant, and users’ app screen-
shots, to extract personal memories. Specifically,
we leverage the capabilities of GPT-4 (OpenAI,
2023) to clean the raw data into memories. We
organize the memories chronologically, and then
use GPT-4 to generate QA pairs within each ses-
sion (a set of consecutive memories). We also
tag the memories involved in generating these QA
pairs, which are then used for subsequent training
purposes. For (2), we introduce a three-layer data
structure, called Editable Memory Graph (EMG).
The first two layers form a tree structure in accor-
dance with the business scopes, while the third
layer consists of a user’s memory graph parsed
from the memory data. This design is motivated
by three considerations: 1) the tree structure allows
for partitioned management of various memory cat-
egories, facilitating expansion to other categories;
and 2) memory data is partitioned under different
categories, with the graph structure to capture their
complex relationships, and 3) this enables efficient

retrieval to locate specific memories for editing, by
searching within relevant partitions rather than the
entire dataset. For (3), we introduce a reinforce-
ment learning (RL) agent that adaptively selects
memories on the EMG, without being constrained
to a fixed Top-K approach. The rationale of us-
ing RL resembles a boosting process. Specifically,
when the agent selects relevant memories (actions),
it prompts a LLM (frozen) to generate improved
answers. The quality of these answers is evalu-
ated by a downstream task metric (reward), which
then guides the agent to refine its policy for better
memory selection. This results in an end-to-end op-
timization process aimed at achieving the desired
goal for downstream tasks.

Overall, we make the following contributions.
(1) We introduce a novel task of crafting LLM-
driven personalized agents, leveraging users’ per-
sonal memories to enhance their experience
through LLM capabilities. This task differs from
existing personal LLM agents in three key chal-
lenges: data collection, editability, and selectabil-
ity. (2) We propose EMG-RAG, a novel solution that
combines EMG and RAG to address the three chal-
lenges. We show that it enables an end-to-end op-
timization process through reinforcement learning
to achieve the goal of personalized agents. (3) We
conduct extensive experiments on a real-world busi-
ness dataset across various LLM architectures and
RAG methods for three downstream applications:
question answering, autofill forms, and user ser-
vices. Our approach demonstrates improvements
of approximately 10.6%, 9.5%, and 9.7% over the
best existing approach for these tasks, respectively.
Moreover, the personalized agents have been trans-
ferred into an AI assistant product, resulting in a
notable improvement in user experience.

2 Related Work

Personalized Dialogue System. To develop a per-
sonalized dialogue system (PDS), the PersonaChat
dataset (Zhang et al., 2018) is collected through
crowdsourcing, which comprises Personas (each
persona is defined by a set of profile sentences) and
Chats (each chat is collected by two crowdwork-
ers with two randomly assigned personas). Based
on the dataset, various techniques have been stud-
ied to address challenges in PDS, including mu-
tual persona perception (Liu et al., 2020; Xu et al.,
2022a; Kim et al., 2020), persona-sparsity (Song
et al., 2021; Welch et al., 2022), long-term persona

memory (Xu et al., 2022b; Zhong et al., 2024),
etc. For example, P2BOT (Liu et al., 2020) is
a GPT-based framework (Radford et al., 2018),
specifically designed to enrich personalized dia-
logue generation through mutual persona percep-
tion. It aims to model the underlying understanding,
such as character traits, within a conversation to
facilitate mutual acquaintance between interlocu-
tors. In addition, a PDS can be further enhanced by
integrating internal reasoning techniques (Hongru
et al., 2023) or external acting techniques (Wang
et al., 2023b), which aim to generate more per-
sonalized and factual responses. In this study, we
construct user-personalized agents using practical
memory data gathered from smartphone AI assis-
tants. Leveraging these agents, we introduce three
distinct applications: question answering, autofill
forms, and user services.

Retrieval-Augmented Generation on Knowledge
Graph. We review the literature on RAG on
knowledge graphs across various tasks, including
KBQA (Ye et al., 2021; Das et al., 2021; Wang
et al., 2023a; Shu et al., 2022), open-domain sce-
narios (Yang et al., 2023), table-related tasks (Jiang
et al., 2023), human-machine conversation (Zhang
et al., 2020), and image captioning (Hu et al., 2023).
This paper (Zhao et al., 2024) provides a detailed
survey on these tasks with RAG techniques. Specif-
ically, TIARA (Shu et al., 2022) stands out as a
KBQA model employing multi-grained retrieval
(entities, logical forms, and schema items) from
knowledge graphs. This approach aids pre-trained
language models in mitigating generation errors.
In this study, we introduce a novel EMG structure
to manage users’ personal memories. Further, we
employ RL to model the RAG process, which opti-
mizes the memory selection on the graph.

Model Editing. Model editing represents a re-
cent research area focused on correcting model
predictions in light of evolving real-world dynam-
ics. It edits the behavior of pre-trained language
models within specific domains, and preserving
performance across other domains without compro-
mise. Some existing methods (De Cao et al., 2021;
Mitchell et al., 2021) employ learnable model ed-
itors, which are trained to predict the weights of
the base model undergoing editing. Other meth-
ods (Meng et al., 2022a,b; Li et al., 2024a) are
designed to identify stored facts (such as specific
neurons in the network) and adjust corresponding
activations to reflect changed facts. Additionally,

SERAC (Mitchell et al., 2022) utilizes an external
memory to store edits, adaptively altering the base
model’s predictions by retrieving relevant edits. In
our study, we leverage a LLM to focus on user
personal memories rather than global knowledge.
Additionally, we support dynamic user edits on
the EMG and utilize RAG with a frozen LLM to
respond to these changes.

3 Problem Statement

We study the problem of developing personalized
agents for users on smartphone AI assistant plat-
forms (such as Apple’s Siri or Samsung’s Bixby).
These agents are designed to assist users in perform-
ing personalized tasks, requiring the fulfillment of
the following two properties in practical scenarios:

- Editability: The responses from the agents may
be editable based on the users’ dynamic memory
data, which involves insertion, deletion, and re-
placement operations corresponding to different
usage scenarios, as illustrated in Figure 2(a).

- Selectability: The agents can select relevant
memories to respond to users’ queries, with some
queries requiring the combination of multiple
memories to generate responses through a base
language model, as illustrated in Figure 2(b).

By satisfying these properties, the agents aim
to enhance the user experience during interactions
with their smartphone AI assistants. These agents
offer essential functionalities to support personal-
ized applications, including question answering,
autofill forms, and user services like reminders for
important events and times, and travel navigation
(further details will be discussed in Section 4.4).

4 Methodology

4.1 Data Collection
The process entails (1) gathering raw data, such as
everyday conversations or screenshots from user
interactions with the smartphone AI assistants; (2)
extracting crucial information from this raw data,
referred to as memories (denoted by M); and (3)
generating QA pairs (denoted by < Q,A >), and
outputting the required memories to facilitate this
pairing. For (1), we acquire data from real AI
assistant products and employ text processing tech-
niques like OCR to extract content from screen-
shots. Subsequently, for (2) and (3), we leverage
the capabilities of LLMs, such as GPT-4 (OpenAI,

My boss is going to Amsterdam for a
business trip next month, and I need to
help him arrange the flight and hotel.
I suggest booking a conveniently
located hotel and confirming all travel
arrangements in advance.

I've already booked the EK349 flight for
my boss and the Crowne Plaza hotel
near Central Station.

That's a very considerate arrangement.
The location of the hotel is indeed
convenient. The boss will be satisfied.

Booking Time 2024-04-15

Order number: I2109459340

 Singapore — Amsterdam

Emirates EK349 Changi1
2024-05-12 01:40

Completed

Order number: G0224031313

 Crowne Plaza — Central Station

1 Queen Bed Standard Accessible Breakfast
2024-05-12 to 2024-05-18

Completed

Figure 1: An example of data collection. Step-1: Raw data is gathered on smartphone AI assistant platforms, e.g.,
everyday conversations between users and assistants, and the extraction of app screenshot contents through OCR.

Table 1: An example of data collection. Step-2: GPT-4 generates memories from raw data. Step-3: GPT-4 forms
QA pairs using several memories, and produces the required memories, which are utilized for training the EMG-RAG.

Step-2: Memories (generated by GPT-4) Step-3: QA pairs with memories (generated by GPT-4)
M1: My boss is traveling to Amsterdam next month,
I assist with flight and hotel arrangements. Q: What time is my boss’s flight to Amsterdam?

A: Your boss flight EK349 departs at 01:40 on 2024-05-12.
Required memories: M1,M2,M4

M2: I booked the EK349 flight.
M3: I booked the Crowne Plaza near Central Station.
M4: The EK349 flight departs at 01:40 on 2024-05-12.

Q: When dose the hotel I booked for my boss start and end?
A: The Crowne Plaza reservation is from 2024-05-12 to 2024-05-18.
Required memories: M1,M3,M5

M5: The Crowne Plaza reservation is for
2024-05-12 to 2024-05-18.
M6: The Crowne Plaza reservation includes a Queen
Bed Standard Accessible room with breakfast.

2023), to extract key memories from the raw data
and create QA pairs. These pairs serve the purpose
of training personalized agents for the proposed
EMG-RAG. To illustrate the collection process, we
provide a running example in Figure 1 and Table 1,
which involve the three primary steps. Further de-
tails are outlined in Appendix A.1.

We discuss the rationales of the data collec-
tion. First, as a user’s personalized agent integrated
within the smartphone AI assistant, the conversa-
tions and screenshots provide natural data sources
for crafting these agents. Second, leveraging GPT-
4’s language generation capabilities enables us to
generate a wide range of memories from the raw
data, significantly reducing manual effort. Third,
the involved memories and collected QA pairs
serve as labels to supervise the training of the re-
trieval and generation processes in our framework.

4.2 Editable Memory Graphs
The EMG Construction and Insights. Utilizing a
user’s memories, we establish the Editable Memory
Graph with a multilayered structure, depicted in
Figure 2(a), where the user is the root node.

Memory Type Layer (MTL): Aligned with the
business scope, we categorize memories into 4 pre-
defined types: Relationship, Preference, Event, and
Attribute. Details are provided in Appendix A.2.

Memory Subclass Layer (MSL): The MSL fur-

ther outlines subclasses for each type, where the
MTL and MSL are organized in a hierarchical tree
structure to manage the memories. Detailed sub-
classes with examples are listed in Appendix A.2.

Memory Graph Layer (MGL): The memory
graph is built by utilizing the collected memories,
employing entity recognition for nodes and relation
extraction for edges. In this graph, each in-degree
node is associated with its corresponding mem-
ory, e.g., the in-degree node (01:40 on 2024-05-12)
contains M4, as shown in Figure 2(a). Further,
to establish the connection between the MSL and
MGL, TransE embeddings (Bordes et al., 2013) are
employed to capture semantic information of nodes
in MSL (subclasses) and MGL (entities), respec-
tively. Then, each entity is assigned to its closest
classes based on these embeddings. It is notewor-
thy that entity nodes are categorized into different
subclasses, and their connections may span across
different classes, e.g., “Boss” and “Amsterdam”
are linked across “Colleague” and “Arrangement”
classes in Figure 2(a). This design enables further
traversal across various parts of the whole graph.

We discuss the insights of the EMG construction:
1) the tree hierarchy (MTL and MSL) offers a parti-
tioned memory management approach, to facilitate
the expansion of additional types and subclasses in
accordance with business needs; 2) the entity nodes

Entity Nodes

Retrieval Paths

Nodes activated by MDPs

Joey

AttributeEventPreferenceRelationship

Colleague Arrangement

Boss

EK349 Cro.
Pla.

01:40
2024-05-

12

2024-
05-12

2024-
05-18

Amst.

Cen.
Sta.32D

01:30
2024-05-

12

Voucher
$20 off

Insert

Replace

(expire: 2024-05-14)

Delete

LocatedNearCheckIn
CheckOut

DepartAt

TravelTo

BookHotelBookFlight

Insert

 : The reserved seat for
the EK349 flight is 32D.

Delete

 : A $20 hotel voucher will
expire on May 14, 2024.

Replace
 : The EK349 flight has
been rescheduled to depart
at 01:30 on May 12, 2024.

(a) Editability on Editable Memory Graphs

(b) Selectability with RAG via a MDP

Boss

EK349 Cro.
Pla.

01:30
2024-05-

12

2024-
05-12

2024-
05-18

Amst.

Cen.
Sta.32D

Voucher
$20 off

SeatNo

ExpireBy

2024-05-14

LocatedNearCheckIn
CheckOut

DepartAt

TravelTo

BookHotelBookFlight

M8

 : What time is my boss's flight to Amsterdam?

LLM : Your boss flight EK349
departs at 01:30 on 2024-05-12

What time is my boss's flight to
Amsterdam?

Your boss flight EK349 departs
at 01:30 on 2034-05-12

Joey, your boss flights to Amst.
today, Please remind him.

ReminderSingapore→Amsterdam
2024-05-12 01:30

Passenger 1 Adult
Contact Jam
Nationality Singapore
Passport S1234567E
Mobile No. +65-12345678

Question Answering Autofill Forms User Services

(c) Downstream Applications

MTL Nodes

MSL Nodes

Edited Nodes

Nodes activated by Questions

Relations

Planning a route to the Crowne
Plaza hotel for you.

Travel
Navigate to my hotel

Figure 2: The architecture of the proposed EMG-RAG, demonstrated with the running example in data collection
(Section 4.1). It supports three editability operations: insertion (e.g., M7), deletion (e.g., M8), and replacement
(e.g., M9), based on the EMG structure (Section 4.2). Subsequently, the edited EMG undergoes RAG to select
relevant memories (e.g., M1,M2,M9) for a given question Q via a MDP (Section 4.3). The generated answers A
by a frozen LLM further facilitates three downstream applications (Section 4.4).

and corresponding memories are organized into
separate subclass partitions, with the graph struc-
ture (MGL) to capture their complex relationships
between memories; 3) it enables efficient retrieval
of memories for further editing operations by first
locating a relevant partition, e.g., querying parti-
tion centers (the mean of the memory embeddings),
instead of searching through all memories.

The EMG Editing. When editing a given mem-
ory within the EMG (e.g., insertion, deletion, or
replacement), the process involves three steps. Ini-
tially, a model such as CPT-Text (Neelakantan et al.,
2022) is employed to acquire memory representa-
tions. Then, the memory is assigned to its nearest
subclass (partition), and the Top-1 retrieved mem-
ory within the partition is then returned, and edit-
ing operations are performed based on comparing
the relations between the given memory and the
retrieved memory. Specifically, as illustrated in
Figure 2, (1) Insertion: It introduces a new relation
to be added, e.g., obtaining a new memory contain-
ing flight seat number. (2) Deletion: It introduces a
new relation, but it is valid for a specific period of
time. e.g., a hotel voucher will expire on May 14,
2024. (3) Replacement: It provides an existing re-
lation, and updates the corresponding entity nodes
based on this relation, e.g., changing the departure
time to 01:30 on May 12, 2024.

4.3 MDP for Selecting Memories on EMGs
Next, we outline the task of selecting memories
based on an edited EMG. To achieve this, we em-
ploy an agent to traverse the EMG. Specifically,
given a question Q, the agent selects a set of
memories from the EMG denoted by M = {Mi},
where 1 ≤ i ≤ |M|. The question Q and mem-
ory set M are concatenated to generate an answer
Â ← LLM(Q ⊕M) using a LLM. We assess the
generation quality using ∆(Â, A), where A repre-
sents the collected ground truth answer for Q, and
∆(·, ·) denotes a specific metric (e.g., ROUGE (Lin,
2004) or BLEU (Post, 2018)). We note that a high-
quality answer Â benefits from the selected mem-
ories M, which can then provide feedback with
∆(·, ·) for subsequent selections. As a result, it iter-
ates in a boosting process, and we optimize it using
reinforcement learning. The environment, states,
actions, and rewards are introduced below.
Constructing Environment (Nodes activated by
Questions). Given an EMG, which often contains
numerous memories in practice. Here, we confine
the movement of the RL agent to a subset of memo-
ries to facilitate more focused selection. To achieve
this, we first retrieve Top-K memories for a given
question Q, and based on these memories, we ac-
tivate the corresponding nodes on the EMG (e.g.,
the nodes highlighted in yellow in Figure 2(b)).

Subsequently, the agent’s traversal starts from each
activated node via depth-first search.
Modeling Memory Selection (Nodes activated
by MDPs). We model the graph traversal process
as a MDP, involving states, actions, and rewards.

States: In the context where we have an input
question Q, and visit a node NG (associated with a
memory Mi to be included into M), and its relation
RG on the EMG. We first extract the entity NQ and
relation RQ from the Q, and the state s is defined
by three cosine similarities C(·, ·), i.e.,

s = {C(vNQ
,vNG

), C(vRQ
,vRG

), C(vQ,vMi)},
(1)

where v· denotes the embedding vector for entities,
relations, questions, or memories.

Actions: We denote an action as a, and it has
two choices during the graph traversal: including
the visiting memory Mi into M, and searching its
connected nodes; or stopping the current search,
and restarting a search from other branches. Thus,
the action a is defined as:

a = 1 (including) or 0 (stopping). (2)

Consider the consequence of performing an action,
it transitions the environment to the next state s′,
and affects which memory to be selected for con-
structing the state.

Rewards: We denote the reward as r, which cor-
responds to the transition from the current state st
to the next state st+1 after taking action at. Specif-
ically, when a memory M is selected into M, the
generated answer by a LLM changes from Â to Â′

accordingly. The quality of the generated answer
Â is evaluated using a specific metric ∆(·, ·) (e.g.,
ROUGE or BLEU), and the reward r is defined as:

r = ∆(Â′, A)−∆(Â, A), (3)

where A denotes the ground truth answer. We note
that the objective of the MDP, which aims to max-
imize cumulative rewards, aligns with the goal of
discovering memories to answer the question. To
illustrate, consider a process through a sequence
of states: s1, s2, ..., sN , concluding at sN . The
rewards received at these states, except for the ter-
mination state, can be denoted as r1, r2, ..., rN−1.
When future rewards are not discounted, we have:

N∑
t=2

rt−1 =

N∑
t=2

(∆(Ât, A)−∆(Ât−1, A))

= ∆(ÂN , y)−∆(Â1, y),

(4)

where ∆(ÂN , y) corresponds to the result of the
final answer found throughout the entire iteration,
and ∆(Â1, y) represents an initial result that re-
mains constant. Therefore, maximizing cumulative
rewards is equivalent to maximizing the quality of
the final generated answer.

Training Policies of MDPs. Training the MDP
policy involves two stages: warm-start stage (WS)
and policy gradient stage (PG). In WS, we employ
supervised fine-tuning to equip the agent with the
basic ability to select memories given a question Q.
Specifically, based on a state s, the agent undergoes
a binary classification task to predict whether the
memory Mi should be included. This prediction is
supervised according to whether the memory falls
into the required memories (presented in the Step-
3 in Table 1). Thus, the objective is trained with
binary cross-entropy, formulated as:

LWS = −y ∗ log(P) + (y − 1) ∗ log(1− P),
(5)

where y denotes the label (1 if the memory falls
into the required memory set, and 0 otherwise), and
P is the predicted probability of the positive class.

In PG, our main objective is to develop a policy
πθ(a|s) that guides the agent in selecting actions
a based on constructed states s, aiming to maxi-
mize the cumulative reward RN . We utilize the
REINFORCE algorithm (Williams, 1992; Silver
et al., 2014) for learning this policy, where the neu-
ral network parameters are denoted by θ. The loss
function is formulated as:

LPG = −RN lnπθ(a|s). (6)

Inference Stage of EMG-RAG. As shown in Figure 2,
the inference involves three steps: (a) collecting
newly recorded memories from users and editing
their EMGs; (b) using the edited EMGs to traverse
the graph and retrieve relevant memories for LLM
generation; (c) integrating the generated answers to
serve users across three downstream applications.

4.4 Discussion on Applications and Cold-start

Applications of the Personalized Agents. As
shown in Figure 2(c), we explore the capabilities of
personalized agents in three scenarios: (1) question
answering, (2) autofill forms, and (3) user services.
For (1), EMG-RAG can generate answers to users’
questions when they interact with the smartphone
AI assistants. For (2), the goal is to extract personal

information from users’ EMGs to automatically fill
out various online forms, such as flight and hotel
bookings. To achieve this, we input form-related
questions (e.g., “What is the user’s mobile num-
ber?”) into the LLM and use the generated enti-
ties to complete the forms. For (3), we focus on
two specific domains. a) reminder service: It in-
volves reminding users of recent events and times.
To achieve this, we query a LLM for information
about a user’s recent events and their associated
times. b) travel service: We assist users with nav-
igation by providing the address of a destination
they might want to visit. Further, we integrate the
generated answers (e.g., events, times, addresses)
with external tools such as calendar or map apps to
provide the services for users.

Handling the Cold-start Problem. Given that
EMG-RAG relies on generated questions for train-
ing, it may encounter a potential cold-start issue
when deploying to answer real user questions. To
address this issue, we utilize online learning to con-
tinuously fine-tune the agent using newly recorded
questions and manually written answers, as out-
lined in Equation 6. This approach aims to ensure
that the model’s policy remains up-to-date for on-
line usage. We validate this method through online
A/B testing, and the results demonstrate improve-
ments in user experience, highlighting the positive
impact of this strategy in practice.

5 Experiments

5.1 Experimental Setup
Dataset and Ground Truth. We conduct experi-
ments on a real-world business dataset containing
approximately 11.35 billion raw text data (includ-
ing conversations and screenshot contents) from an
AI assistant product collected between March 2024
and June 2024. After data cleaning, the dataset
forms around 0.35 billion memories. We follow the
data distribution to randomly sample 2,000 users
for training and 500 users for testing.

As detailed in Section 4.1, we establish the
ground truth for the applications of question an-
swering and autofill forms/user services using GPT-
4 generated answers and key entities (e.g., identi-
fication number, address, and time), respectively.
We provide a quality evaluation for the collected
dataset in Section 5.2.
Baselines. We compare EMG-RAG with the fol-
lowing RAG methods. 1) NiaH (Briakou et al.,
2023): It simply inputs all of the users’ memo-

ries into a LLM within the context window size to
generate the answer. 2) Naive (Ma et al., 2023):
It implements a basic RAG execution process in-
volving indexing, retrieval, and generation. 3) M-
RAG (Wang et al., 2024): It partitions a database
and employs Multi-Agent RL to train two agents
for RAG. Agent-S selects a database partition,
while Agent-R refines the stored memories within
that partition to generate a better answer. In our
adaptation, we omit Agent-R since, in our scenario,
the generated answers must be grounded in the
user’s personal memories, which cannot be altered
due to potential risks. 4) Keqing (Wang et al.,
2023a): The knowledge graph-based method de-
composes a question into sub-questions, retrieves
candidate entities, generates answers for each sub-
question, and then integrates them into a compre-
hensive final answer.

In addition, we integrate the RAG methods into
three typical LLM architectures. 1) GPT-4 (Ope-
nAI, 2023) is a Transformer-based pre-trained
model known for its human-level performance. 2)
ChatGLM3-6B (Du et al., 2022) is a long-text di-
alogue model with a sequence length of 32K. 3)
PanGu-38B (Ren et al., 2023) is a dialogue sub-
model of the PanGu series, which follows a Mix-
ture of Experts (MoE) architecture.
Evaluation Metrics. We evaluate the effectiveness
of EMG-RAG in three downstream applications. For
question answering, we assess the quality of gener-
ated answers with the ground truth, and reporting
ROUGE (R-1/2/L) (Lin, 2004) and BLEU (Post,
2018) scores. For autofill forms and user ser-
vices, we generate key entities and report Exact
Match (EM) accuracy. Overall, higher values (i.e.,
ROUGE, BLEU, EM) indicate better results 1.
Implementation Details. We implement EMG-RAG
and other baselines in Python 3.7, using the
Faiss library 2 for index construction. We utilize
TransE (Bordes et al., 2013) to obtain embeddings
of entities and relations, and CPT-Text (Neelakan-
tan et al., 2022) to obtain embeddings of questions
and memories. The RL agent is implemented with
a two-layer neural network, where the hidden layer
consists of 20 neurons and uses the tanh activation
function. The output layer has 2 neurons corre-
sponding to the action space. Several built-in RL
codes are available in (Wang et al., 2021; Zhang
et al., 2023b). The hyperparameter K for activated

1We remark that all reported results are statistically signifi-
cant, as confirmed by a t-test with p < 0.05.

2https://github.com/facebookresearch/faiss

Table 2: Effectiveness of EMG-RAG in downstream applications.

LLM RAG
Question Answering Autofill Forms

(EM)
User Services (EM)

R-1 R-2 R-L BLEU Reminder Travel
GPT-4 NiaH 79.89 64.65 70.66 38.72 84.86 84.49 94.81
GPT-4 Naive 70.87 58.34 66.82 46.65 78.40 85.34 94.52
GPT-4 M-RAG 88.71 77.18 84.74 64.16 90.87 93.75 86.67
GPT-4 Keqing 72.11 57.19 65.46 35.89 82.03 90.17 72.71
GPT-4 EMG-RAG 93.46 83.55 88.06 75.99 92.86 96.43 91.46
ChatGLM3-6B EMG-RAG 85.31 76.03 82.32 56.88 85.71 87.50 81.25
PanGu-38B EMG-RAG 91.64 82.86 86.71 75.11 90.99 96.41 89.05

Table 3: Effectiveness of EMG-RAG for continuous edits.
Duration (weeks) 1 2 3 4
of edits 2,515 9,644 2,096 6,290
Apps (GPT-4) QA AF US QA AF US QA AF US QA AF US
M-RAG 88.48 91.67 90.28 86.39 88.89 89.39 85.31 87.50 87.83 85.09 83.33 83.21
EMG-RAG 95.38 93.75 93.67 96.93 95.83 95.89 94.53 96.88 96.99 94.99 97.50 97.54

Table 4: Ablation study.
Components R-1 R-2 R-L BLEU
EMG-RAG 93.46 83.55 88.06 75.99
w/o Act. Nodes 90.96 82.72 86.13 65.07
w/o WS 92.95 82.52 86.49 69.13
w/o PG 90.59 80.69 86.19 65.65

nodes is empirically set to 3. We generate 1,000
episodes for the warm-start stage and 100 episodes
for the policy gradient stage. We use the Adam
stochastic gradient descent with a learning rate of
0.001 to optimize the policy, and the reward dis-
count is set to 0.99. We cache the generated QA
pairs 3 during training to boost efficiency.

5.2 Experimental Results

(1) Effectiveness evaluation (question answer-
ing). We compare the EMG-RAG with other RAG
methods for question answering on three LLMs. As
shown in Table 2, we observe that the performance
of EMG-RAG consistently outperforms the baselines.
For example, it improves upon the best baseline
method, M-RAG, by 5.3%, 8.3%, 3.9%, and 18.4%
in terms of R-1, R-2, R-L, and BLEU, respectively.
This improvement is due to two main factors: 1) it
captures complex relationships between memories
with the EMG, and 2) it effectively selects essential
memories for the RAG execution. Additionally,
GPT-4 demonstrates superior performance com-
pared to other LLMs, and EMG-RAG shows compa-
rable performance to M-RAG even when deployed
on the relatively smaller ChatGLM3-6B.
(2) Effectiveness evaluation (autofill forms). We

3https://github.com/zilliztech/GPTCache

further evaluate the EMG-RAG for autofill forms, and
it shows consistent improvement, as detailed in
Table 2. For example, it surpasses M-RAG by 2.2%
in terms of exact match accuracy.

(3) Effectiveness evaluation (user services). We
target two specific domains of user services: 1)
reminders of important events and their times, and
2) travel services involving destination addresses
for navigation. We report the exact match accuracy
for events and times (reminders), and addresses
(travel) in Table 2. The improvements over M-RAG
for the two tasks are 2.9% and 5.5%.

(4) Effectiveness evaluation (continuous edits).
We evaluate the effectiveness of EMG-RAG in sup-
porting continuous edits over a period of 4 weeks.
The results, in terms of R-L for question answering
(QA), and exact match accuracy for autofill forms
(AF) and user services (US, combining reminder
and travel results), are presented in Table 3. We
observe that EMG-RAG consistently outperforms M-
RAG, by approximately 10.6%, 9.5%, and 9.7%
for QA, AF, and US, respectively. This is owing to
the editability of EMG-RAG, whereas M-RAG sim-
ply incorporates edits into a database, where many
memories may become outdated for answering. Ad-
ditionally, we report the total number of edits in-
volved in the testing set for each week.

(5) Ablation study. To evaluate the effectiveness
of different components in EMG-RAG, we conduct an
ablation study. (1) We omit the design of activated
nodes, and the search starts from the root of EMG.
(2) We remove the warm-start stage (WS) and only
train the policy in the policy gradient stage (PG).
(3) We remove the PG and use the WS only. For

Table 5: Impacts of the number of K for activated nodes.
K 1 2 3 4 5
R-L 84.55 86.06 88.06 88.06 87.19
Inference (s) 1.35 1.63 2.14 2.55 3.32

Table 6: Online A/B test.

Apps
Cold-start

A (old EMG-RAG) B (new EMG-RAG) Impr
QA 88.06 91.99 4.5%
AF 92.86 95.85 3.2%
US 94.66 97.56 3.1%

(1), it results in a performance drop (e.g., R-1 from
93.46 to 90.96), because many irrelevant memories
(as noises) may be retrieved if the search starts from
the root. For (2) and (3), we observe that the PG
contributes the most to the result (e.g., R-1 from
93.46 to 90.59), because it can explicitly optimize
the performance end-to-end, and WS provides a
basic memory selection ability for the agent.
(6) Parameter study (K for activated nodes). We
vary the value of K from 1 to 5 and report the R-L
score for the question answering task, along with
the corresponding inference times. As shown in
Table 5, we observe that K = 3 provides the best
effectiveness while maintaining reasonable infer-
ence time. When K is smaller, the limited number
of activated nodes for graph traversal restricts the
ability to find crucial memories. Conversely, when
K is larger, it activates many nodes and returns
numerous memories, potentially introducing noise
that hinders the LLM generation. As expected, the
inference time increases as K increases.
(7) Online A/B test. We perform an online A/B test
over one month to compare the new system with
the existing one. During this period, we collect
real users’ questions and manually written answers
to fine-tune the model. The results, presented in
Table 6, show further improvements across all ap-
plications. It highlights a cold-start problem caused
by distributional shifts between questions gener-
ated by GPT-4 and those posed by real users. We
use GPT-4-generated questions for model training
because they cover diverse scenarios and allow for
the automatic collection of required memories, en-
abling large-scale training. Once the trained model
is deployed, we fine-tune it using real user ques-
tions and manually written answers through online
learning as described in Section 4.4.
(8) Data quality evaluation. We evaluate data
quality across three data collection steps. For Step-
1, we note that OCR is a well-established technol-

Table 7: Data quality evaluation.
Data Quality QA AF US

Human Evaluation 91.1% 87.5% 97.4%
GPT-4 Evaluation 93.3% 98.7% 99.3%

ogy used to extract information from app screen-
shots in our study. Given that the printed fonts
from apps are typically standard, OCR is not ex-
pected to face significant challenges. For Step-2
and Step-3, we utilize the powerful GPT-4 model
for memory and QA pair collection and assess qual-
ity from two perspectives: (1) Qualitatively: We
present memory samples from our focus domains
as shown in Table 8, which generally meet the ex-
pected precision. (2) Quantitatively: We assess
quality using human evaluation and LLM evalu-
ation. The results are reported in Table 7. For
human evaluation, we randomly selected 10% of
the user data and asked five participants to annotate
the answers (for QA) and entities (for AF and US)
based on the collected questions and memories. By
comparing the human-annotated answers and en-
tities with those generated by GPT-4, we report a
R-L score of 91.1% for QA and exact match scores
of 87.5% for AF and 97.4% for US. These results
demonstrate the high accuracy of the collected data.
For LLM evaluation, we employ a method where
GPT-4 self-verifies whether it can generate answers
(or entities) that are consistent with those obtained
during the data collection, based on the collected
questions and required memories. The evaluation
reveals the scores of 93.3%, 98.7%, and 99.3% for
the three applications, respectively, demonstrating
a high level of consistency and effectiveness.

6 Conclusion

In this paper, we present a novel task of creat-
ing personalized agents powered by LLMs, which
leverage users’ personal memories to enhance three
downstream applications. Our solution, EMG-RAG,
combines RAG techniques with an EMG to tackle
challenges in data collection, editability, and se-
lectability. Extensive experiments are conducted to
confirm the effectiveness of EMG-RAG.

7 Limitations

For limitations, while only the parameters of the
RL agent are trained and the parameters of the
LLMs remain fixed, the training efficiency is not
higher than that of a Naive RAG setup. This in-
efficiency stems from the need to query the LLM
during training to obtain answers for optimization.

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. NeurIPS, 26.

Eleftheria Briakou, Colin Cherry, and George Foster.
2023. Searching for needles in a haystack: On the
role of incidental bilingualism in palm’s translation
capability. arXiv preprint arXiv:2305.10266.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and
Mario Vento. 2004. A (sub) graph isomorphism al-
gorithm for matching large graphs. IEEE TPAMI,
26(10):1367–1372.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew Mccallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In EMNLP, pages 9594–9611.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021.
Editing factual knowledge in language models. In
EMNLP, pages 6491–6506.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In ACL, pages 320–335.

Dongge Han, Trevor McInroe, Adam Jelley, Stefano V
Albrecht, Peter Bell, and Amos Storkey. 2024. Llm-
personalize: Aligning llm planners with human pref-
erences via reinforced self-training for housekeeping
robots. arXiv preprint arXiv:2404.14285.

WANG Hongru, Rui Wang, Fei Mi, Yang Deng, WANG
Zezhong, Bin Liang, Ruifeng Xu, and Kam-Fai
Wong. 2023. Cue-cot: Chain-of-thought prompting
for responding to in-depth dialogue questions with
llms. In EMNLP (Findings), pages 12047–12064.

Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-
Wei Chang, Yizhou Sun, Cordelia Schmid, David A
Ross, and Alireza Fathi. 2023. Reveal: Retrieval-
augmented visual-language pre-training with multi-
source multimodal knowledge memory. In CVPR,
pages 23369–23379.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Hyunwoo Kim, Byeongchang Kim, and Gunhee Kim.
2020. Will i sound like me? improving persona
consistency in dialogues through pragmatic self-
consciousness. In EMNLP, pages 904–916.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. NeurIPS,
33:9459–9474.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang,
Jun Ma, and Jie Yu. 2024a. Pmet: Precise model
editing in a transformer. In AAAI, volume 38, pages
18564–18572.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li,
Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenx-
ing Xu, Xiang Wang, Yi Sun, et al. 2024b. Per-
sonal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint
arXiv:2401.05459.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou,
Zixuan Chen, Bin Zhou, and Dongmei Zhang. 2020.
You impress me: Dialogue generation via mutual
persona perception. In ACL, pages 1417–1427.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. EMNLP, pages
5303–5315.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual associ-
ations in gpt. NeurIPS, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In ICML, pages 15817–
15831. PMLR.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. CoRR.

OpenAI. 2023. GPT-4 technical report. arXiv preprint.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In WMT, pages 186–191.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing
Huang, Yadao Wang, Weichao Wang, Pengfei Li,
Xiaoda Zhang, Alexander Podolskiy, Grigory Arshi-
nov, et al. 2023. Pangu-{\Sigma}: Towards trillion
parameter language model with sparse heterogeneous
computing. arXiv preprint arXiv:2303.10845.

Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David
Aparicio, and Fernando Silva. 2021. A survey on
subgraph counting: concepts, algorithms, and ap-
plications to network motifs and graphlets. ACM
Computing Surveys (CSUR), 54(2):1–36.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
Tiara: Multi-grained retrieval for robust question
answering over large knowledge base. In EMNLP,
pages 8108–8121.

David Silver, Guy Lever, Nicolas Heess, Thomas De-
gris, Daan Wierstra, and Martin Riedmiller. 2014.
Deterministic policy gradient algorithms. In ICML,
pages 387–395. PMLR.

Haoyu Song, Yan Wang, Kaiyan Zhang, Weinan Zhang,
and Ting Liu. 2021. Bob: Bert over bert for training
persona-based dialogue models from limited person-
alized data. In ACL, pages 167–177.

Julian R Ullmann. 1976. An algorithm for subgraph
isomorphism. Journal of the ACM (JACM), 23(1):31–
42.

Chaojie Wang, Yishi Xu, Zhong Peng, Chenxi Zhang,
Bo Chen, Xinrun Wang, Lei Feng, and Bo An. 2023a.
keqing: knowledge-based question answering is a na-
ture chain-of-thought mentor of llm. arXiv preprint
arXiv:2401.00426.

Hongru Wang, Minda Hu, Yang Deng, Rui Wang, Fei
Mi, Weichao Wang, Yasheng Wang, Wai Chung
Kwan, Irwin King, and Kam-Fai Wong. 2023b.
Large language models as source planner for person-
alized knowledge-grounded dialogues. In EMNLP
(Findings), pages 9556–9569.

Zheng Wang, Cheng Long, and Gao Cong. 2021. Tra-
jectory simplification with reinforcement learning.
In ICDE, pages 684–695. IEEE.

Zheng Wang, Shu Xian Teo, Jieer Ouyang, Yongjun
Xu, and Wei Shi. 2024. M-RAG: Reinforcing
large language model performance through retrieval-
augmented generation with multiple partitions. In
ACL.

Charles Welch, Chenxi Gu, Jonathan K Kummerfeld,
Verónica Pérez-Rosas, and Rada Mihalcea. 2022.
Leveraging similar users for personalized language
modeling with limited data. In ACL, pages 1742–
1752.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256.

Chen Xu, Piji Li, Wei Wang, Haoran Yang, Siyun Wang,
and Chuangbai Xiao. 2022a. Cosplay: Concept set
guided personalized dialogue generation across both
party personas. In SIGIR, pages 201–211.

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu
Niu, Hua Wu, Haifeng Wang, and Shihang Wang.
2022b. Long time no see! open-domain conversation
with long-term persona memory. In ACL (Findings),
pages 2639–2650.

Qian Yang, Qian Chen, Wen Wang, Baotian Hu, and
Min Zhang. 2023. Enhancing multi-modal multi-
hop question answering via structured knowledge
and unified retrieval-generation. In ACM MM, pages
5223–5234.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2021. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. arXiv preprint arXiv:2109.08678.

Houyu Zhang, Zhenghao Liu, Chenyan Xiong, and
Zhiyuan Liu. 2020. Grounded conversation genera-
tion as guided traverses in commonsense knowledge
graphs. In ACL, pages 2031–2043.

Kai Zhang, Fubang Zhao, Yangyang Kang, and Xi-
aozhong Liu. 2023a. Memory-augmented llm per-
sonalization with short-and long-term memory coor-
dination. arXiv preprint arXiv:2309.11696.

Qianru Zhang, Zheng Wang, Cheng Long, Chao Huang,
Siu-Ming Yiu, Yiding Liu, Gao Cong, and Jieming
Shi. 2023b. Online anomalous subtrajectory detec-
tion on road networks with deep reinforcement learn-
ing. In ICDE, pages 246–258. IEEE.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you have
pets too? In ACL, pages 2204–2213.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren
Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, and Bin Cui. 2024. Retrieval-
augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In AAAI,
volume 38, pages 19724–19731.

A Appendix

A.1 Data Collection Details

The data collection process involves three key steps,
which are presented below:

Step-1: Raw Data Collection. We explore two
approaches, termed Active Remember (AR) and
Passive Remember (PR), for collecting raw data
derived from users’ daily conversations with AI as-
sistants and screenshots from their apps. With AR,
the AI assistant is trained to actively classify data
(such as conversation sentences) into supported
subclasses outlined in Table 8, and filter out noise
data. With PR, users have the option to directly
let the assistant to remember specific content for
future use. Leveraging AR and PR, we remove a
significant volume of trivial data, and then extract
memories from the refined dataset.

Step-2: Memory Data Construction. We uti-
lize a LLM, such as GPT-4, with the refined dataset
to generate structured memories from the raw data.
Additionally, we integrate various natural language
processing techniques, including absolute date and
time conversion, entity anaphora resolution, and
event coreference resolution, to further clean the
memories and facilitate graph construction.

Step-3: QA Pairs Construction. We organize
the memory data chronologically and partition it
into separate conversation sessions. Then, a LLM
generates QA pairs for each session. To create
complex questions for targeted training, such as
those requiring multiple memories for answering,
we explicitly instruct the LLM to utilize multiple
associative relationships between memories to gen-
erate questions, ensuring that at least one or more
memories are needed for accurate responses.

A.2 Memory Types and Subclasses

We describe the 4 memory types: (1) Relationship,
which involves recognizing users’ surrounding rela-
tionships and attributes of related individuals, such
as birthdays and names of family members; (2)
Preference, where we identify users’ likes and dis-
likes for various topics or entities; (3) Event, fo-
cusing on key event information about users, such
as their status, recent experiences, and upcoming
schedules; and (4) Attribute, encompassing users’
personal details such as name, gender, age, posses-
sions, and other relevant information.

We enumerate the supported business subclasses
of the EMG with memory examples in Table 8.

A.3 Further Discussion

Q1. The necessity of using a graph if the user
memory size is small.

We analyze the user memory size based on sta-
tistical data. We list the number of memories gen-
erated from user interactions with the intelligent
assistant over the past one day, in descending order:
the Top-1,000 user has 296 memories; the Top-
10,000 user has 101 memories; and the Top-20,000
user has 72 memories. Notably, around 20,000
users produce at least 70 memories each day, and
the memory size increases over time. These users
represent a significant portion that should not be
overlooked, necessitating a graph structure (such
as EMG) for effective management.

Moreover, using a graph enhances effectiveness
by naturally capturing semantic relationships be-
tween memories, which improves reasoning during
RAG. As demonstrated by the experimental results
in Table 2 and Table 3, our approach outperforms
the NiaH, Naive, and M-RAG baselines, achiev-
ing approximately a 10% improvement over the
best baseline M-RAG, which manages the memory
instances independently.
Q2. What would be the storage and compu-
tation costs of EMG if the number of users is
larger? Is it possible to share some common
patterns of different users in this design?

We clarify that EMGs are independently man-
aged and computed on each user’s personal de-
vice, and the storage and computation costs are
not impacted by the number of users in practice.
To reduce storage costs, we consider a potential
solution of sharing common patterns across differ-
ent users’ EMGs. We aim to mine common sub-
graph patterns using classic subgraph isomorphism
algorithms (Ribeiro et al., 2021; Ullmann, 1976;
Cordella et al., 2004). On the server side, we will
manage the common patterns identified by Graph
ID (GID), and link user-specific data identified by
User ID (UID) to them. On the user side, GIDs
and UIDs will replace the corresponding data in
the EMGs, minimizing duplication across different
users’ EMGs.
Q3. Privacy discussions in data collection and
model training, e.g., is the model trained in a
single user-based? Will the model output other
user’s information during inference?

In data collection, we clarify that the data is col-
lected solely for individual use to provide relevant
applications. Each user’s EMG is independently

Table 8: The supported memory subclasses with memory examples.

Memory Types Memory Subclasses Memory Examples

Relationship

Spouse

Tomorrow is my mom’s birthday.
Parents/Children
Relatives
Colleague/Friends
Teacher/Student

Preference

Diet preference I like spicy food.

Cultural preference (tourism, travel) I enjoy traveling by airplane.
I like going to museums.

Car preference I like BMWs.
Sports preference
(favorite sports types, sports celebrities)

I like playing table tennis on weekends.
James is my favorite basketball star.

Gaming preference (category, name) I like the game League of Legends.
Audio-visual entertainment preference
(favorite videos, music, movies, TV shows)

I like science fiction movies.
I like listening to Jay Chou’s songs.

Event

Life events
(academic, marriage, buying a flat, parenting)

The college entrance examination is coming soon.
I met a girlfriend online.
My family is welcoming a second child.

Arrangement
I’m going to visit clients tomorrow.
I want to travel to Amsterdam next month.
I have an oral defense next Monday.

Anniversary Next month’s fifth is our wedding anniversary.

Attribute

Name/Nickname My name is Wang Xiaoming, call me Lord Radish.

Birthday/Age
I am 17 years old this year.
I was born in 1998.
My birthday is April 2nd.

Gender I am a girl.
Education I am an undergraduate student.
Personal belongings/Pets Riding my beloved electric scooter, my pink BMW.
Address I reside in Jurong West, Singapore.
Occupation I am a research scientist.

built based on the collected data, and will not be
shared. Additionally, all user information presented
in this research has been de-identified.

In model training, we use a single-user approach
and address privacy concerns as follows: (1) EMGs
are independently managed for each user and are
not shared. (2) The RL agent is a simple neural
network that includes or excludes nodes (actions 1
or 0) in the personal graph. (3) The LLM remains
frozen, ensuring it does not memorize user data or
output information from other users.

A.4 Prompts for Data Collection
Table 9 presents the prompt for collecting memo-
ries from raw extracted data, while Table 10 pro-
vides the prompt for generating reasoning as the
required memories for QA pairs. The prompt for
generating QA pairs based on this reasoning is pre-
sented in Table 11. Additionally, Table 12 offers an
alternative method to synthesize memories when
raw extracted data is unavailable.

Table 9: Prompt for collecting memories from raw extracted data.

Please help me organize the following raw user data into standardized memory data.

Here is an example format:
1. My name is Zhang Zhenqiang.
2. My zodiac sign is Aquarius.
3. My company’s address is Oriental International, Pudong New District, Shanghai.
4. My mother’s birthday is April 8, 1982.
5. My father’s favorite sport is basketball.
6. I watched the movie “Fast and Furious” at Orange Cinema in July 2023.
7. Next Saturday, I will attend a high school friend’s wedding.

Note: Please use the above format to output and display all the data. + {raw data}

Table 10: Prompt for generating reasoning as the required memories for QA pairs.

You have many memories from one person. Explore all possible associations, including multi-hop
and connections around the same event, person, or entity. Records can intersect between different
associations.

Here is an example: Assume the following memory records exist:
{“ID”: 1, “Memory Content”: “Recently, my sleep hasn’t been good and lacks deep sleep.”,
“Memory Location”: “Lychee Garden Apartment, Longgang District, Shenzhen, Guangdong
Province”, “Memory Time”: “2024-04-22 08:31:19”}
{“ID”: 2, “Memory Content”: “My girlfriend likes to eat durian.”, “Memory Location”: “Wuhe
Avenue, Longgang District, Shenzhen, Guangdong Province”, “Memory Time”: “2021-11-14
15:31:54”}
{“ID”: 3, “Memory Content”: “Baiguoyuan is having a durian promotion next week, and I want
to buy some.”, “Memory Location”: “Tianan Cloud Valley Building 1, B Section, Xuegang
North Road, Longgang District, Shenzhen, Guangdong Province”, “Memory Time”: “2022-10-10
09:30:27”}

Based on the above memory records, you can extract multiple sets of associations as follows:
The memory mentions that your girlfriend likes to eat durian (Memory Point 2), and Baiguoyuan
is having a durian promotion next week (Memory Point 3). You could buy some durian from
Baiguoyuan during the promotion, so these memories are related (Memory Points 2|3).

Please extract the associations from the following memory records as thoroughly as possible based
on the above example. Multi-hop reasoning relationships, associations around the same event,
person, or entity can all be considered as existing connections. Memory records within each
association group can intersect; for example, a memory point appearing in one set of associations
can also appear in another set if it is reasonable. Please meet the above requirements and return the
output following the example. + {memories}

Table 11: Prompt for generating QA pairs.

You currently have a set of historical memory records from the same mobile user and hints of
multiple associations between these memories. Based on all the memory information and their
associations, design some intent statements or questions with the corresponding answers outputting
as <questions, answers> for the mobile assistant that require at least one memory record to provide
an accurate response. Below is an example:

Example:
Given the following memory records:
{“ID”: 1, “Memory Content”: “Recently, my sleep hasn’t been good and lacks deep sleep.”,
“Memory Location”: “Lychee Garden Apartment, Longgang District, Shenzhen, Guangdong
Province”, “Memory Time”: “2024-04-22 08:31:19”}
{“ID”: 2, “Memory Content”: “My girlfriend likes to eat durian.”, “Memory Location”: “Wuhe
Avenue, Longgang District, Shenzhen, Guangdong Province”, “Memory Time”: “2021-11-14
15:31:54”}
{“ID”: 3, “Memory Content”: “Baiguoyuan is having a durian promotion next week, and I want
to buy some.”, “Memory Location”: “Tianan Cloud Valley Building 1, B Section, Xuegang
North Road, Longgang District, Shenzhen, Guangdong Province”, “Memory Time”: “2022-10-10
09:30:27”}

Based on the above memory information, there are the following association hints:
Your girlfriend likes durian (Memory 2), and Baiguoyuan has a durian promotion next week
(Memory 3). You could buy some durian at Baiguoyuan during the promotion. These memories are
related around durian (Memory 2|3).

Based on the above memory information and associations, you can construct the following intent
statements or questions:
“I want to buy something delicious for my girlfriend. Any recommendations?” (Requires Memory
2|3)
The corresponding answers:
“You could buy some durian at Baiguoyuan during the promotion”

Please construct intent statements or questions from the following memory information and associ-
ations, meeting all of the following requirements:

1. The statements or questions should be directed from the user to the mobile assistant, not
questions from the assistant to the user (important requirement).

2. They should require at least one memory record to provide an accurate response (important
requirement).

3. Keep the content concise and avoid including details already mentioned in the memory records
(important requirement).

4. Avoid intent statements or questions related to reminders (important requirement).
5. Include both questions and casual statements (important requirement).
6. End with the required memory points for response in parentheses (important requirement).

The memory information is as follows: {memories}
The memory association hints are as follows: {reasoning}

Table 12: Prompt for synthesizing memories.

Please act as a conversation context manager and help me generate personal memory-related data.
Below are some examples; please use them as a reference for generating memory data:
{“ID”: 1, “Memory Content”: “My girlfriend likes to eat durian.”, “Memory Location”: “Wuhe
Avenue, Longgang District, Shenzhen, Guangdong Province”, “Memory Time”: “2021-11-14
15:31:54”}
{“ID”: 2, “Memory Content”: “Baiguoyuan is having a durian promotion next week, and I want
to buy some.”, “Memory Location”: “Tianan Cloud Valley Building 1, B Section, Xuegang
North Road, Longgang District, Shenzhen, Guangdong Province”, “Memory Time”: “2022-10-10
09:30:27”}

The generated data should meet the following requirements:
1. The memory data is generated from conversations with a mobile assistant and reflects everyday

scenarios. The protagonist is a single individual. You may create realistic content including, but
not limited to, basic information about the individual and their family and friends (birthdays,
anniversaries, zodiac signs, ID information, passport information, bank card information, etc.),
events (meetings, gatherings, travels, renovations, etc.), and order information (movie tickets, hotel
reservations, train tickets, flight tickets, etc.). Make sure there are no logical conflicts between the
generated data.

2. The memories should exhibit logical multi-step reasoning and not be completely unrelated.
For example: “My mom’s older brother is named Li Aiguo” and “My uncle’s address is a small
shop next to Tiananmen Square.” These two memories are linked through the fact that my mom’s
older brother (my uncle) acts as a reasoning hub, allowing me to deduce that Li Aiguo’s address is
the small shop next to Tiananmen Square.

3. Ensure that there are no real-world logical conflicts between memory content, locations,
and times. For example, earlier memories should have earlier timestamps than later ones. Avoid
generating two memories with locations far apart within a short timeframe, such as a memory from
Beijing at 20:15:47 and another from Guangzhou at 20:16:20 on the same day.

4. Memory locations can include scenarios like business trips and travel; they do not all need to
be in the same city. Memories can be generated in multiple cities.

Generate 50 more memories in JSONL format, numbered 1 to 50, with each entry including
“memory content”, “memory location”, and “memory time”.

