
Online Anomalous Subtrajectory Detection on

Road Networks with Deep Reinforcement Learning

Qianru Zhang
∗‡

, Zheng Wang
∗§

, Cheng Long
†§

, Chao Huang
‡
, Siu-Ming Yiu

‡
, Yiding Liu

¶
,

Gao Cong
§
, Jieming Shi

∥
‡
Department of Computer Science, The University of Hong Kong, Hong Kong SAR

§
School of Computer Science and Engineering, Nanyang Technological University, Singapore,

¶
Baidu Inc, China

∥
Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR

{qrzhang,chuang,smyiu}@cs.hku.hk, zheng011@e.ntu.edu.sg, {c.long,gaocong}@ntu.edu.sg

liuyiding.tanh@gmail.com, jieming.shi@polyu.edu.hk

Abstract—Detecting anomalous trajectories has become an
important task in many location-based applications. While
many approaches have been proposed for this task, they suf-
fer from various issues including (1) incapability of detecting
anomalous subtrajectories, which are finer-grained anomalies
in trajectory data, and/or (2) non-data driven, and/or (3)
requirement of sufficient supervision labels which are costly
to collect. In this paper, we propose a novel reinforcement
learning based solution called RL4OASD, which avoids all
aforementioned issues of existing approaches. RL4OASD in-
volves two networks, one responsible for learning features
of road networks and trajectories and the other responsible
for detecting anomalous subtrajectories based on the learned
features, and the two networks can be trained iteratively
without labeled data. Extensive experiments are conducted on
two real datasets, and the results show that our solution can
significantly outperform the state-of-the-art methods (with
20-30% improvement) and is efficient for online detection (it
takes less than 0.1ms to process each newly generated data
point).

Index Terms—trajectory data, anomalous subtrajectory de-
tection, road networks, deep reinforcement learning

I. INTRODUCTION

With the advancement of mobile computing and geograph-

ical positioning techniques, such as GPS devices and smart

phones, massive spatial trajectory data is being generated

by various moving objects (e.g., people, vehicles) in spatial

spaces. Such collected trajectory data records the mobility

traces of moving objects at different timestamps, which

reflects diverse mobility patterns of objects. Accurate spatial

trajectory data analysis serves as the key technical compo-

nent for a wide spectrum of spatial-temporal applications,

including intelligent transportation [1], location-based rec-

ommendation service [2], pandemic tracking [3], and crime

prevention for public safety [4].

Among various trajectory mining applications, detecting

anomalous trajectories plays a vital role in many practi-

cal scenarios. For example, the real-time vehicle trajectory

anomaly detection is beneficial for better traffic management

[5]. Additionally, studying the mobility behaviors of humans

for discovering their anomalous trajectories is helpful for

∗
Both authors contributed equally to this research.

†
Corresponding author.

S D

Fig. 1. An example of anomalous trajectory. T1, T2 and T3 are three

trajectories from the same source e1 to the same destination e10.

predicting event outliers (e.g., civil unrest and pandemic

outbreaks) [6]. In such context, an outlier/anomaly refers

to a trajectory which does not show the normal mobility

patterns and deviates from the majority of the trajectories

with the same source and destination [7], [8] (termed as

SD pair). Consider the example in Figure 1. There are three

trajectories from the source S(e1) to the destination D(e10).
The trajectory T3 (the red one) is considered as anomalous

if the majority of the trajectories with the same SD pair

< S,D > follow either T1 (the blue one) or T2 (the green

one).

Recently, detecting anomalous trajectories has attracted

much attention, and many efforts have been devoted to

proposing various methods ([8], [9], [10], [11], [12], [13])

for solving this problem. However, several key challenges

have not been well addressed in current methods, which are

summarized in Table I and elaborated as follows.

(1) Incapability of detecting anomalous subtrajecto-
ries. Most existing approaches [9], [10], [11], [12], [13] have

only focused on identifying anomalous trajectories at coarse-

grained levels, and detecting whether a trajectory as a whole
is anomalous or not. However, the anomalous trajectory

detection at the fine-grained level is more beneficial for better

decision making in smart city applications, but unfortunately

less explored in current methods. For instance, a ride-hailing

TABLE I

The existing methods and their corresponding issues (

√
indicates

the issue exists and × otherwise).

Incapability of detecting

anomalous subtrajectories

Non-data

driven

Requirement of sufficient

supervision labels

[8] ×
√

×
[9]

√
× ×

[10]

√ √
×

[11]

√
× ×

[12]

√
×

√

[13]

√
×

√

company can immediately spot an abnormal driver when

his/her trajectory starts to deviate from the normal route,

which indicates an anomalous subtrajectory. Hence, in this

work, we propose to detect fine-grained anomalous subtra-

jectories in a timely manner.

(2) Non-data driven. Some existing approaches are based

on pre-defined parameters and/or rules, and are not data

driven [8], [10]. For example, the approach in [8] is to use

some manually defined parameters to isolate an anomalous

subtrajectory. It uses an adaptive window maintaining the

latest incoming GPS points to compare against normal tra-

jectories, where the normal trajectories are supported by

the majority of the trajectories within an SD pair. As a

new incoming point is added to window, it then checks the

support of the subtrajectory in the window. If the support

is larger than a pre-defined threshold, the point is labeled to

be normal; otherwise, the point is labeled to be anomalous,

and the adaptive window is reduced to contain only the latest

point. The process continues until the trajectory is completed.

The anomalous subtrajectory is recognized as those points

labeled to be anomalous. However, the threshold is hard

to set appropriately, and not general enough to cover all

possible situations or adaptive to different road conditions.

Another approach in [10] uses trajectory similarity (e.g.,

discrete Frechet) to detect anomalies. It computes the distance

between a given normal trajectory and the current partial

trajectory for each new incoming point, it reports an anomaly

event if the distance exceeds a given threshold; otherwise, the

detection continues.

(3) Requirement of sufficient supervision labels.
While several machine learning models have been developed

to identify the anomalous trajectories [12], [13], the effec-

tiveness of those methods largely relies on sufficient labeled

data under a supervised learning framework. Nevertheless,

practical scenarios may involve a very limited amount of

labeled anomalous trajectories compared with the entire

trajectory dataset due to the requirement of heavy human

efforts, e.g., the trajectory data used in [8] only contains 9

SD pairs.

In this paper, we propose a novel reinforcement learning

based solution RL4OASD, which avoids the aforementioned

issues of existing approaches. First, RL4OASD is designed

to detect anomalous subtrajectories in an online fashion, and

thus it avoids the first issue. It achieves this by predict-

ing a normal/anomalous label for each road segment in a

trajectory and detecting anomalous subtrajectories based on

the labels of road segments. Second, RL4OASD is a data-

driven approach relying on data without labels, and thus it

avoids the second and third issues. Specifically, RL4OASD
consists of three components, namely data preprocessing,

network RSRNet and network ASDNet (see Figure 2). In

data preprocessing, it conducts map-matching on raw tra-

jectories, mapping them onto road networks and obtains

the map-matched trajectories. Based on the map-matched

trajectories, it computes some labels of the road segments

involved in trajectories using some heuristics based on the

historical transition data among road segments. The labels,

which are noisy, will be used to train RSRNet in a weakly

supervised manner. In RSRNet, it learns the representations

of road segments based on both traffic context features and

normal route features. These representations in the form

of vectors will be fed into ASDNet to define the states of

a Markov decision process (MDP) for labeling anomalous

subtrajectories. In ASDNet, it models the task of labeling

anomalous subtrajectories as an MDP and learns the policy

via a policy gradient method [14]. ASDNet outputs refined

labels of road segments, which are further used to train

RSRNet again, and then RSRNet provides better observations

for ASDNet to train better policies. We emphasize that

the noisy labels computed by the preprocessing component

only provide some prior knowledge to address the cold-start

problem of training RSRNet, but are not used to train the

model as in a supervised paradigm. Furthermore, the concept

of anomalous trajectory might drift over time. For example,

due to some varying traffic conditions (e.g., some accidents),

the trajectory might gradually deviate from a normal route,

and the concept of “normal” and “anomalous” is changed

accordingly. RL4OASD can handle “concept drift” with an

online learning strategy, i.e., it continues to be refined when

new data comes in.

Our contributions can be summarized as follows.

• We propose the first deep reinforcement learning based

solution to detect anomalous subtrajectories. The pro-

posed model 1) can detect anomalous subtrajectories

naturally, 2) is data-driven, and 3) does not require

labeled data. In addition, it can handle the concept drift

of anomalous trajectories via online learning.

• We conduct extensive experiments on two real-world

trajectory datasets, namely Chengdu and Xi’an. We

compare our proposed solution with various baselines,

and the results show that our solution is effective (e.g.,

it yields 20-30% improvement compared to the best

existing approach) and efficient (e.g., it takes less than

0.1ms to process each newly generated data point).

• We manually label the anomalous subtrajectories for

two real datasets, Chengdu and Xi’an, for testing. Each

labeled dataset covers 200 SD pairs and 1,688 (resp.

1,057) map-matched trajectories with these SD pairs

for the Chengdu dataset (resp. the Xi’an dataset). This

labeled dataset is more than 50 times larger than the

existing known dataset [8]. The manually labeled test

data is publicly accessible via the link
1
. We believe

this relatively large labeled dataset would help with

comprehensive and reliable evaluations on approaches

for anomalous subtrajectory detection.

II. RELATED WORK

A. Online Anomalous Trajectory/Subtrajectory Detection.

Online anomalous trajectory detection aims to detect an

ongoing trajectory in an online manner. Existing studies

propose many methods for the problem and involve two

categories: heuristic-based methods [8], [10] and learning-

based methods [9], [11].

For heuristic methods, Chen et al. [8] investigate the

detection of anomalous trajectories in an online manner via

the isolation-based method, which aims to check which parts

of trajectories are isolated from the reference (i.e., normal)

trajectories with the same source and destination routes.

This method aims to detect the anomalous subtrajectories

from ongoing trajectories, which is similar to our paper.

However, this method models reference trajectories based

on many manually-set parameters. Besides, the performance

of this method is evaluated on a small manually labeled

dataset with 9 SD pairs only, which fails to reflect the

generalization of this method. A recent work [10] proposes

to calculate the trajectory similarity via discrete Frechet

distance between a given reference route and the current

partial route at each timestamp. If the deviation exceeds a

given threshold at any timestamp, and the system alerts that

an anomaly event of detouring is detected. There are many

predefined parameters involved in this method. Our work

differs from these heuristic-based studies in that it is based

on a policy learned via reinforcement learning instead of the

hand-crafted heuristic with many predefined parameters (e.g.,

the deviation threshold) for detecting anomalies. Besides, we

evaluate the performance of our method on a large dataset.

For learning-based methods, a recent study [11] proposes

to detect anomalous trajectories via a generation scheme,

which utilizes the Gaussian mixture distribution to represent

different kinds of normal routes and detects those anomalous

trajectories that cannot be well-generated based on the given

representations of normal routes. This method aims to detect

whether the ongoing trajectory is anomalous or not. Another

learning-based method [9] proposes a probabilistic model to

detect trajectory anomalies via modeling the distribution of

driving behaviours from historical trajectories. The method

involves many potential features that are associated with

driving behaviour modeling, including road level and turning

angle, etc. This method also only targets whether the online

trajectory is anomalous or not.

In our work, we target a finer-grained setting, i.e, detecting

which part of an anomalous trajectory, namely subtrajectory,

is responsible for its anomalousness in an online manner.

Nevertheless, anomalous subtrajectory detection is not the

focus in these studies.

1
https://github.com/lizzyhku/OASD

B. Offline Anomalous Trajectory Detection.

Offline anomalous trajectory detection refers to detecting

an anomalous trajectory or anomalous subtrajectories of a

trajectory, where the trajectory inputted in an offline manner.

Also, there are two types of studies. One type is heuristic-

based methods [15], [16], [17], [18], [19] and another type is

learning-based methods [20], [12]. For heuristic-based meth-

ods, some heuristic metrics involving distance or density met-

rics are usually utilized to detect anomalous trajectories. For

example, an early study [15] proposes a partition and detect

mechanism to conduct anomalous subtrajectory detection.

The main idea is to partition the trajectories and detect the

anomalous trajectory segments by computing the distance

of each segment in a target trajectory to the segments in

other trajectories. A recent study [18] utilizes edit distance

metrics to detect anomalous trajectories based on mining the

normal trajectory patterns. Another study [16] proposes to

cluster trajectories based on the same itinerary and further

detect anomalous trajectories via checking whether the target

trajectory is isolated from the cluster. In addition, [21]

proposes a system which is utilized to detect fraud taxi

driving. The main idea of this method is to detect anomalous

trajectories via combining distance and density metrics.

Other studies are proposed to detect anomalous trajectories

with learning-based methods. For example, Song et al [12]

adopt recurrent neural network (RNN) to capture the sequen-

tial information of trajectories for detection. However, the

proposed model needs to be trained in a supervised manner,

and the labeled data is usually unavailable in real applica-

tions. Another learning-based work [20] aims at detecting

anomalous trajectories by new moving subjects (i.e., new

taxi driver detection) with an adversarial model (i.e., GAN)

is adapted. It is clear that these methods proposed in this

line of research cannot be utilized for the online detection

scenario.

C. Other Types of Anomalous Detection Studies.

Some studies [19], [22], [23], [24], [25] focus on other

types of anomalous trajectory detection, which are related

to ours. We review them as follows. Banerjee et al. [19]

study temporal anomaly detection, which employs travel time

estimation and traverses some potential subtrajectories in a

target trajectory, where the anomalies are identified if the

travel time largely deviates from the expected time. Li et

al. [22] detect temporal anomalies and a method utilizing his-

torical similarity trends is studied. In addition, Ge et al. [23]

investigate the Top-K evolving anomalies. [24], [25] detect

anomalous trajectories in large-scale trajectory streams.

D. Deep Reinforcement Learning.

Deep reinforcement learning aims to guide an agent to

make sequential decisions to maximize a cumulative reward,

as the agent interacts with a specific environment, which is

usually modeled as a Markov decision process (MDP) [26]. In

recent years, reinforcement learning has attracted much re-

search attention. For example, Oh et al. [27] explores inverse

reinforcement learning for sequential anomaly detection, and

Huang et al. [28] designs a deep RL-based anomaly detector

for time series detection. Wang et al. [29], [30] proposes

to use RL-based algorithms to accelerate subtrajectory or

sub-game similarity search. In addition, RL-based solutions

are developed to simplify trajectories with different objec-

tives [31], [32]. In this paper, we propose a novel RL-based

solution for online anomalous subtrajectory detection (called

RL4OASD), and a policy gradient method [33] is adopted

for solving the problem. To our best knowledge, this is the

first deep reinforcement learning based solution for online

anomalous subtrajectories detection.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Raw Trajectory. A raw trajectory T consists of a sequence

of GPS points, i.e., T =< p1, p2, ..., pn >, where a GPS point

pi is in the form of a triplet, i.e., pi = (xi, yi, ti), meaning

that a moving object is located on (xi, yi) at timestamp ti,
and n represents the length of the trajectory T .

Road Network. A road network is represented as a directed

graph G(V,E), where V represents a vertex set referring

to crossroads or intersections, and E represents an edge set

referring to road segments, and for each edge e, it connects

two vertexes u and v on the road network, denoted as e =
(u, v).

Map-matched Trajectory. A map-matched trajectory refers

to a trajectory generated by a moving object on road

networks, which corresponds to a sequence of road seg-

ments [34], i.e., T =< e1, e2, ..., en >.

For simplicity, we use T to denote a map-matched trajec-

tory, and we refer to map-matched trajectories as trajectories

or routes interchangeably in the rest of the paper.

Subtrajectory and Transition. A subtrajectory T [i, j] cor-

responds to a portion of the trajectory T =< e1, e2, ..., en >
from ei to ej , 1 ≤ i ≤ j ≤ n. A transition is defined as a

special case of a subtrajectory, which only consists of two

adjacent road segments, i.e., < ei−1, ei >, where 1 < i ≤ n.

B. Problem Definition

We study the problem of online anomalous subtrajectory
detection. Consider a source S and destination D pair (SD

pair) and a set of trajectories T between them. Intuitively,

a trajectory T can be considered as normal if it follows the

route traveled by the majority of trajectories in T . Based on

this, we denote an anomalous subtrajectory representing a

part of a trajectory, which does not follow the normal routes

within the SD pair. We formulate the problem as follows.

Problem 1 (OASD): Given an ongoing trajectory T =<
e1, e2, ...en > that is generated from its source ST to

destination DT in an online fashion, where the points ei are

generated one by one, and the future points are not accessible

in advance. The OASD problem is to detect and update which

parts of T (i.e., subtrajectories) are anomalous, while T is

sequentially generated.

IV. METHODOLOGY

A. Overview of RL4OASD

Determining whether a subtrajectory of an ongoing tra-

jectory is anomalous or not is a decision-making process,

which could be modeled as a Markov decision process

(MDP) [26]. We propose a weakly supervised framework

called RL4OASD (see Figure 2 for an overview). The frame-

work consists of three components, namely data prepro-

cessing (Section IV-B), RSRNet (Section IV-C) and ASDNet

(Section IV-D).

In data preprocessing, we conduct map-matching on raw

trajectories, mapping them onto road networks and obtain

the map-matched trajectories. Based on the map-matched

trajectories, we compute some labels of the road segments

involved in trajectories using some heuristics based on the

historical transition data among road segments. The labels,

which are noisy, will be used to train RSRNet in a weakly

supervised manner. In RSRNet, we learn the representations

of road segments based on both traffic context features and

normal route features. These representations in the form of

vectors will be fed into ASDNet to define the states of the

MDP for labeling anomalous subtrajectories. In ASDNet, we

model the task of labeling anomalous subtrajectories as a

MDP and learn the policy via a policy gradient method [14].

ASDNet outputs refined labels of road segments, which are

further used to train RSRNet again, and then RSRNet provides

better observations for ASDNet to train better policies. The

process iterates and we call the resulting algorithm combin-

ing RSRNet and ASDNet as RL4OASD (Section IV-E).

We explain some insights behind the effectiveness of

RL4OASD as follows. First, in RSRNet, both traffic context

features (e.g., driving speed, trip duration) and normal route

features that are associated with the anomalies are well

captured into the model. Second, in ASDNet, the task of

labeling anomalous subtrajectories is formulated as a MDP,

whose policy is learned in a data-driven manner, instead of

using heuristics (e.g., some pre-defined parameters) as the

existing studies do. Third, RSRNet is first trained with noisy

labels for dealing with the cold-start problem. Then, RSRNet

and ASDNet are trained iteratively and collaboratively, where

RSRNet uses ASDNet’s outputs as labels and ASDNet uses the

outputs of RSRNet as features.

B. Data Preprocessing

The data processing component involves a map matching

process [34] and a process of obtaining noisy labels. The latter

produces some noisy labels, which will be utilized to pre-train

the representations in RSRNet and also to provide a warm-

start for the policy learning in ASDNet. Recall that we do

not assume the availability of real labels for training since

manually labeling the data is time-consuming. Specifically,

the process of obtaining noisy labels involves four steps.

Step-1: We group historical trajectories in a dataset with

respect to different SD pairs and time slots. Here, we have 24

time slots if we partition one day with one hour granularity,

Noisy Labeling

Data Preprocessing RSRNet

Map Matching

Raw Map-matched

Noisy Labels

Road Segs

Traffic Context
Feature

Road Segment
Representation

Normal Route
Feature

Toast
Embedding

Prediction Loss

Pre-training (Noisy Labels)

State

Reward

Action

0
1
1
1

0

0

Policy

Training (Refined Labels)

Gradient

ASDNet

0 0 0 01 1

LSTM Concat Softmax

Fig. 2. Overview of RL4OASD, where

⊕
denotes the concatenation operation.

and we say a trajectory falls into a time slot if its starting

travel time is within the slot. For example, in Figure 1, we

have three map-matched trajectories T1, T2 and T3 with the

source e1 and destination e10. Assuming the starting travel

times of T1, T2 and T3 are 9:00, 9:10, and 9:30, respectively.

Then, all three trajectories are in the same group because they

are within the same time slot with one hour granularity.

Step-2: We then compute the fraction of transitions each

from a road segment to another with respect to all trajectories

in each group. Suppose that there are 5 trajectories traveling

along T1, 4 along T2, and only 1 along T3, the fraction of

transition < e1, e2 > is calculated as 5/10 = 0.5 since it

appears 5 times (along T2 and T3) in all 10 trajectories.

Step-3: For each trajectory, we refer to the group it belongs

to and map it to a sequence of transition fractions with

respect to each road segment. For example, for a trajectory

traveling the route as T3, its mapped transition sequence

is << ∗, e1 >,< e1, e2 >,< e2, e4 >,< e4, e11 >
,< e11, e12 >,< e12, e13 >,< e13, e14 >,< e14, e15 >
,< e15, e10 >>, where we pad the initial transition as

< ∗, e1 >, and the corresponding fraction sequence is

< 1.0, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0 >. Note that the

fractions on the source e1 (corresponding to < ∗, e1 >)

and the destination e10 (corresponding to < e15, e10 >)

are always set to 1.0, since the source and destination road

segments are definitely travelled within its group.

Step-4: We obtain the noisy labels by using a threshold

parameter α, where 0 denotes a normal road segment, whose

fraction is larger than α meaning that the road segment is

frequently traveled, and 1 otherwise. For example, by using

the threshold α = 0.5, we obtain the noisy labels of T3 as

< 0, 1, 1, 1, 1, 1, 1, 1, 0 >.

C. Road Segment Representation Network (RSRNet)

In RSRNet, we adopt the LSTM [35] structure, which

accepts trajectories with different lengths and captures the

sequential information behind trajectories. We embed two

types of features into representations, namely the traffic

context features on road networks and the normal route

features for a given SD pair.

Traffic Context Feature (TCF). A map-matched trajectory

corresponds to a sequence of road segments and each road

segment is naturally in the form of a token (i.e., the road seg-

ment id). We pre-train each road segment in the embedding

layer of RSRNet as a vector, which captures traffic context

features (e.g., driving speed, trip duration, road type). To do

this, we employ Toast [36], which is a recent road network

representation learning model to support road segment based

applications. The learned road segment representations will

be used to initialize the embedding layer in RSRNet, and

those embeddings can be further optimized with the model

training. Other road network representation models [37], [38]

are also applicable for the task.

Normal Route Feature (NRF). Given an SD pair in a time

slot, we first infer the normal routes within it. Intuitively, the

normal trajectories often follow the same route. If a trajectory

contains some road segments that are rarely traveled by

others, it probably contains anomalies. Therefore, we infer

a route as the normal route by calculating the fraction of

the trajectories passing through the route with respect to

all trajectories within its SD pair. The inferred results are

obtained via comparing a threshold (denoted by δ) with

the fraction of each road segment, i.e., a route is inferred

as the normal if the fraction is larger than the threshold,

and vice versa. For example, in Figure 1, recall that there

are 5 trajectories traveling along T1, 4 along T2, and only

1 along T3. Given δ = 0.3, we infer T1 (and resp. T2)

as the normal route, because its fraction 5/10 = 0.5 (and

resp. 4/10 = 0.4) is larger than the threshold δ in all 10

trajectories. Based on the inferred normal routes, we then

extract the features of a trajectory. For example, given a

trajectory following T3, we extract the features as follows:

a road segment in a target trajectory is normal (i.e., 0) if

the transition on that road segment occurs in the inferred

normal routes; and 1 otherwise. For example, the extracted

normal features of T3 are < 0, 0, 0, 1, 1, 1, 1, 1, 0 >, where

the feature on the road segment e2 is 0 since the transition

< e1, e2 > occurs in the normal route T2. Note that the

source and destination road segments always have the feature

0 (i.e., normal). We notice normal route features and noisy

labels are both in the form of 0-1. The difference between

them is that the former is to capture the information of

normal routes, and correspondingly it is obtained by normal

routes at a route-level. In contrast, the latter is used as the

labels for training RSRNet, which is obtained by computing

transition frequencies at an edge-level. In addition, the former

is utilized during the whole training process, while the latter

is utilized to pre-train the representations in RSRNet only

(which would provide a warm-start for ASDNet). After

obtaining the normal route features that are in the form of

tokens, we then obtain a vector for the feature by embedding

the tokens as one-hot vectors. We call the obtained vectors

embedded normal route features.

Training RSRNet. Figure 2 illustrates the architecture of

RSRNet. In particular, given a sequence of embedded traffic

context features xi
t

(1 ≤ i ≤ n), where n denotes the tra-

jectory length, the LSTM obtains the hidden state hi at each

road segment. We then concatenate hi with the embedded

normal route feature xi
n

, denoted by zi = [hi;x
n
i]. Note

that the two parts h and xn
capture the sequential trajectory

information and normal route information, respectively. Note

that we do not let xn
go through the LSTM since it preserves

the normal route feature at each road segment. We adopt

cross-entropy loss to train RSRNet between the predicted

label ŷi based on the zi and the noisy/refined label yi, i.e.,

L =
1

n

n∑
i=1

H(yi, ŷi), (1)

where H denotes the cross-entropy operator.

D. Anomalous Subtrajectory Detection Network (ASDNet)
Consider the task of online anomalous subtrajectory de-

tection is to sequentially scan an ongoing trajectory, and for

each road segment, decide whether an anomaly happened

at that position. This motivates us to model the process as

a Markov decision process (MDP), involving states, actions,

and rewards.

States. We denote the state when scanning the road segment

ei as si. The state si (1 < i ≤ n) is represented as the

concatenation of zi and v(ei−1.l), i.e., si = [zi;v(ei−1.l)],
where zi is obtained from RSRNet and v(ei−1.l) denotes a

vector of the label on the previous road segment ei−1 by

embedding its token (i.e., 0 or 1). The rationale for the state

design is to capture the features from three aspects, i.e., traffic

context, normal routes and the previous label.

Actions. We denote an action of the MDP by a, which is

to label each road segment as normal or not. Note that an

anomalous subtrajectory boundary can be identified when

the labels of two adjacent road segments are different.

Rewards. The reward involves two parts. One is called local
reward, which aims to capture the local continuity of labels of

road segments. The rationale is that the labels of normal road

segments or anomalous road segments would not change

frequently. The second one is called global reward, which

aims to indicate the quality of the refined labels (indicated by

the cross-entropy loss of RSRNet). We take the loss as some

feedback to guide the training of ASDNet.

The local reward is an intermediate reward, which en-

courages the continuity of the labels on road segments.

Specifically, it is defined as

rlocali = sign(ei−1.l = ei.l) · cos(zi−1, zi), (2)

where the sign(ei−1.l = ei.l) returns 1 if the condition

ei−1.l = ei.l is true (i.e., the labels are continued) and

-1 otherwise; cos(zi−1, zi) denotes the consine similarity

between zi−1 and zi, which are obtained from RSRNet. We

choose the consine similarity because it outputs a normalized

value between 0 and 1, which corresponds to the same output

range (i.e., between 0 and 1) of the global reward.

The global reward is designed to measure the quality of

refined labels by ASDNet. We feed the refined labels into

RSRNet, and compute the global reward as

rglobal =
1

1 + L
, (3)

where L denotes the cross-entropy loss in Equation 1. We

notice this reward has the range between 0 and 1, and makes

the objective of RSRNet well aligned with ASDNet (a smaller

loss L means a larger global reward).

Policy Learning on the MDP. The core problem of a MDP

is to learn a policy, which guides an agent to choose actions

based on the constructed states such that the cumulative

reward, denoted by Rn, is maximized. We learn the policy

via a policy gradient method [14], called the REINFORCE

algorithm [39]. To be specific, let πθ(a|s) denote a stochastic

policy, which is used to sample an action a for a given state

s via a neural network, whose parameters are denoted by θ.

Then, the gradients of some performance measure J(θ) wrt

the network parameters θ are estimated as

∇θJ(θ) =

n∑
i=2

Rn∇θ lnπθ(ai|si), (4)

which can be optimized using an optimizer (e.g., Adam

stochastic gradient ascent). The expected cumulative reward

Rn for a trajectory is defined as

Rn =
1

n− 1

n∑
i=2

rlocali + rglobal. (5)

Joint Training of RSRNet and ASDNet. We jointly train

the two networks (e.g., RSRNet and ASDNet). First, we

map raw trajectories on road networks and generate the

noisy labels as explained in Section IV-B. Then, we ran-

domly sample 200 trajectories to pre-train the RSRNet and

ASDNet, separately. In particular, for the RSRNet, we train

the network in a supervised manner with the noisy labels.

For the ASDNet, we specify its actions as the noisy labels,

and train the policy network via a gradient ascent step as

computed by Equation 4. The pre-training provides a warm-

start for the two networks, where the parameters of the two

Algorithm 1: The RL4OASD algorithm

Input: A map-matched trajectory

T =< e1, e2, ..., en > which is inputted in an

online manner

1 for i = 1, 2, ..., n do
2 if i = 1 or i = n then
3 ei.l← 0;

4 else
5 Call RSRNet for obtaining a representation zi;
6 Construct a state si = [zi;v(ei−1.l)];
7 Sample an action (i.e., 0 or 1), ai ∼ πθ(a|s);
8 ei.l← ai;
9 Monitor the anomalous subtrajectory

consisting of the road segments with the label

1 and return the subtrajectory when it is

formed;

10 end
11 Return a NORMAL trajectory signal;

networks have incorporated some information captured from

the normal routes before joint training.

During the joint training, we randomly sample 10,000

trajectories, and for each trajectory, we generate 5 epochs

to iteratively train the RSRNet and ASDNet. In particular,

we apply the learned policy from ASDNet to obtain refined

labels, and the refined labels are used to train the RSRNet

to obtain the better representation zi on each road segment.

Then, zi is used to construct the state to learn a better policy

in ASDNet. Since the learned policy can further refine the

labels, and the two networks are jointly trained with the best

model is chosen during the process.

E. The RL4OASD Algorithm

Our RL4OASD algorithm is based on the learned policy

for detecting anomalous subtrajectories. The process is pre-

sented in Algorithm 1. Specifically, RL4OASD accepts an

ongoing trajectory in an online fashion for labeling each

road segment as the normal (i.e., 0) or not (i.e., 1) (lines 1-

9). It first labels the source or destination road segment as

normal by definitions (lines 2-3). It then constructs a state

via calling RSRNet (lines 5-6), and samples an action to label

the road segment based on the learned policy in ASDNet

(lines 7-8). It monitors the anomalous subtrajectory that

involves the abnormal labels (i.e., 1) on the road segments and

returns it when it is formed (line 9). Finally, if no anomaly is

detected, the algorithm returns a NORMAL trajectory signal

(line 11). We further develop two enhancements for boosting

the effectiveness and efficiency of RL4OASD. One is called

Road Network Enhanced Labeling (RNEL), and the other is

called Delayed Labeling (DL).

Road Network Enhanced Labeling. For the RNEL, we

utilize the graph structure of a road network to help labeling

a road segment, where a label on a road segment is deter-

ministic in one of three cases: (1) If ei−1.out = 1, ei.in = 1,

then ei.l = ei−1.l. (2) If ei−1.out = 1, ei.in > 1 and

ei−1.l = 0, then ei.l = 0. (3) If ei−1.out > 1, ei.in = 1 and

ei−1.l = 1, then ei.l = 1. Here, ei.out and ei.in denote the

out degree and in degree of a road segment ei, respectively,

and ei.l denotes the label of the road segment ei. The

common intuition behind them is that: (a) any change of the

anomalousness status from normal (0) at ei−1 to abnormal

(1) at ei means that there exist alternative transitions from

ei−1 to other road segments (i.e., ei−1.out > 1); and (b) any

change of the anomalousness status from abnormal (1) at

ei−1 to normal (0) at ei means that there exist alternative

transitions from other road segments to ei (i.e., ei.in > 1).

Based on the rules, we only perform actions in the otherwise

cases via the RL model, and some potential wrong decisions

can therefore be avoided. In addition, the efficiency can be

improved since the time of taking actions in some cases is

saved via checking the rules instead of calling the RL model.

Delayed Labeling. For the DL, RL4OASD forms an anoma-

lous subtrajectory whenever its boundary is identified, i.e.,

the boundary is identified at ei−1 if ei−1.l = 1 and ei.l = 0.

Intuitively, it looks a bit rush to form an anomalous subtra-

jectory and may produce many short fragments from a target

trajectory. Therefore, we consider a delay technique as a post-

processing step. Specifically, it scans D more road segments

that follow ei−1 when forming an anomalous subtrajectory.

Among the D road segments, we choose the final position j
(i−1 < j ≤ i−1+D) where the road segment is with label

1, and then convert some 0’s to 1’s between the position i−1
and j. It could be verified the labeling with delay does not

incur much time cost, and offers a better continuity to avoid

forming too many fragments.

Time complexity. The time complexity of the RL4OASD
algorithm is O(n), where n denotes the length of a target

trajectory. The time is dominated by two networks, i.e.,

RSRNet and ASDNet. We analyze them as follows. In RSRNet,

the time cost for one road segment consists of (1) that

of obtaining embeddings of TCF and NRF, which are both

O(1) and (2) that of obtaining the z via a classic LSTM

cell, which is O(1). In ASDNet, the time cost for one road

segment consists of (1) that of constructing a state, where

the part z has been computed in RSRNet and the part v(e.l)
is obtained via an embedding layer, which is O(1) and (2)

that of sampling an action via the learned policy, which is

O(1). As we can see in Algorithm 1, the two networks are

called at most n times. Therefore, the time complexity of the

RL4OASD is O(n) × O(1) = O(n). We note that the O(n)
time complexity maintains the current best time complexity

as those of existing algorithms [8], [9], [11] for the trajectory

or subtrajectory anomaly detection task, and can largely

meet practical needs for online scenarios as shown in our

experiments.

Handling Concept Drift of Anomalous Trajectories. As

discussed in Section III, we detect anomalous subtrajectories

that do not follow the normal routes. However, the concept

of “normal” and “anomalous” may change over time with

varying traffic conditions. For example, when some popular

route is congested, then drivers may gradually prefer to

travel another unpopular route (i.e., to avoid traffic jams).

In this case, the unpopular route should be considered as a

normal route, while the trajectories traveling the previous

route may become anomalous. To handle the issue caused

by the concept drift of the normal and anomalous, we adopt

an online learning strategy [11], where the model continues

to train with newly recorded trajectory data, and keeps its

policy updated for the current traffic condition (we have

validated the effectiveness of the strategy in Section V-G).

Discussion on the cold-start problem. As the anomalous

subtrajectories are defined as unpopular parts, and thus there

may exist a cold-start problem for the detection, where the

historical trajectories are not sufficient for some SD pairs.

Our method relies on the historical trajectories for defining

the normal route feature. The feature is calculated as a

relative fraction between 0 and 1. Specifically, the feature

of a route is defined to be the number of trajectories along

the route over the total number of trajectories within the SD

pair. We have conducted experiments by varying the number

of historical trajectories within the SD pairs in Table VI. The

results show that our model is robust against sparse data, e.g.,

its effectiveness only degrades by 6% even if 80% of historical

trajectories are dropped. The cold-start problem in anomalous

trajectory/subtrajectory detection looks very interesting. We

believe that some generative methods, e.g., to generate some

routes within the sparse SD pairs, can possibly be leveraged

to overcome the issue, which we plan to explore as future

work.

V. EXPERIMENTS

A. Experimental Setup
Dataset. The experiments are conducted on two real-

world taxi trajectory datasets from DiDi Chuxing
2
, namely

Chengdu and Xi’an. All raw trajectories are preprocessed

to map-matched trajectories via a popular map-matching

algorithm [34], and the road networks of the two cities are

obtained from OpenStreetMap
3
. Following previous stud-

ies [11], [8], we preprocess the datasets and filter those SD-

pairs that contain less than 25 trajectories to have sufficient

trajectories to indicate the normal routes. We randomly

sample 10,000 trajectories from the datasets for training, and

the remaining for testing.

Ground Truth. By following the previous works [16], [8],

[18], we manually label the anomalous subtrajectories, and

take the labeled subtrajectories as the ground truth for the

evaluation. Specifically, we sample 200 SD pairs with suffi-

cient trajectories between them (e.g., at least 30 trajectories

for each pair, and over 900 trajectories on average). For

labeling subtrajectories, we illustrate all routes (i.e., map-

matched trajectories) within each SD pair and highlight the

road segments that are traveled by the majority of trajectories

2
https://outreach.didichuxing.com/research/opendata/en/

3
https://www.openstreetmap.org/

TABLE II

Dataset statistics.

Dataset Chengdu Xi’an

of trajectories 677,492 373,054

of segments 4,885 5,052

of intersections 12,446 13,660

of labeled routes (trajs) 1,688 (558,098) 1,057 (163,027)

of anomalous routes (trajs) 1,436 (3,930) 813 (2,368)

Anomalous ratio 0.7% 1.5%

Sampling rate 2s ∼ 4s 2s ∼ 4s

as shown in Figure 5. We invite 5 participants, and first spend

10 minutes to get everyone to understand the visualization,

then let them identify whether the routes are anomalous or

not based on visual inspection. If a participant thinks the

route is anomalous, we then ask the participant to label

which parts are responsible for its anomalousness. For

quality control, we randomly pick 10% trajectories, ask 5

other checkers to label these trajectories independently, adopt

the majority voting to aggregate the labels, and compute the

accuracy of the labels by the labelers against the aggregated

ones by the checkers. The accuracy is 98.7% for Chengdu and

94.3% for Xi’an, which shows that our labeled datasets are

with high accuracy.

Multiple raw trajectories may correspond to the same route

and thus we have fewer routes than raw trajectories. We

label 1,688 (resp. 1,057) routes, which correspond to 558,098

(resp. 163,027) raw trajectories before map-matching for

Chengdu (resp. Xi’an). Among them, 1,436 (resp. 813) routes

that correspond to 3,930 (resp. 2,368) raw trajectories are

identified as the anomalous for Chengdu (resp. Xi’an), where

the anomalous ratios for Chengdu and Xi’an are estimated

as 3, 930/558, 098 = 0.7% and 2, 368/163, 027 = 1.5%,

respectively. The statistics of the datasets are reported in

Table II.

Baseline. We review the literature thoroughly, and iden-

tify the following baselines for the online detection prob-

lem, including IBOAT [8], DBTOD [9], GM-VSAE [11], SD-

VSAE [11], SAE [11], VSAE [11] and CTSS [10]. The detailed

description of these algorithms are represented as follows:

• IBOAT [8]: it is an online method to detect anomalous

trajectories via checking which parts of trajectories isolate

from reference (i.e., normal) trajectories for the same

source and destination routes.

• DBTOD [9]: it utilizes a probabilistic model to perform

anomalous trajectory detection by modeling human driving

behaviors from historical trajectories.

• GM-VSAE [11]: it is a method aiming to detect anomalous

trajectories via a generation scheme. This method utilizes

the Gaussian mixture distribution to represent categories

of different normal routes. Then based on these representa-

tions, the model detects anomalous trajectories which are

not well-generated.

• SD-VSAE [11]: it is a fast version of GM-VSAE, which

outputs one representation of the normal route with the

maximized probability. And based on this normal route

representation, the model detects anomalous trajectories

that cannot be generated well followed by GM-VSAE.

• SAE [11]: we adapt GM-VSAE, where SAE replaces the en-

coder and decoder structure in GM-VSAE with a traditional

Seq2Seq model, which aims to minimize a reconstruction

error, and the reconstruction error is further used to define

the anomaly score.

• VSAE [11]: we also adapt GM-VSAE by using VSAE to re-

place the Gaussian mixture distribution of the latent route

representations in GM-VSAE with a Gaussian distribution.

• CTSS [10]: it is a method to detect anomalous trajecto-

ries via calculating the trajectory similarity with discrete

Frechet distance between a given reference route and the

current partial route at each timestamp.

We notice the baselines [9], [11], [10] are proposed for

anomalous trajectory detection, and output an anomaly score

on each point in a trajectory. We note that those scores are

computed from the beginning, i.e., they only consider the

subtrajectories starting from the source, which causes them

difficult to be adapted for the subtrajectory detection task,

where the detected subtrajectories can be started at any po-

sition of the trajectory. Thus, we adapt them in this way. We

tune their thresholds of the anomaly scores in a development

set (i.e, a set of 100 trajectories with manual labels), and

for each tuned threshold, the anomalous subtrajectories are

identified as those road segments, whose anomaly scores are

larger than the threshold. The threshold that is associated

with the best performance (evaluated by F1-score and de-

tails will be presented later) is selected for experiments. In

addition, we also tune the parameters of baselines to the best

based on the development set. For RL4OASD, it naturally

outputs the anomalous subtrajectories for experiments.

Parameter Setting. In RSRNet, we embed the TCF and

NRF features into the 128-dimensional vectors, and use the

LSTM with 128 hidden units to implement the RSRNet. The

parameter α, δ and D are set to 0.5, 0.4 and 8, respectively.

To train RSRNet, we compute noisy labels in 24 time slots

with one hour granularity via empirical studies. In ASDNet,

the dimension of label vectors v(ei.l) is 128. The policy

network is implemented with a single-layer feedforward

neural network, and the softmax function is adopted as the

activation function. By empirical findings, the learning rates

for RSRNet and ASDNet are set to 0.01 and 0.001, respectively.

Evaluation Metrics. To verify the results of subtrajectory

detection, we consider two evaluation metrics. First, we adapt

the evaluation metric F1-score proposed for Named Entity

Recognition (NER) [40], [41]. This is inspired by the fact

that our task corresponds to one of tagging subsequences

of a sequence, which is similar to NER, which tags phrases

(i.e., subsequences) of a sentence (sequence). The intuition

is that we take the anomalous subtrajectories as entities in

NER task. Specifically, (1) let Cg,i denote a manually labeled

anomalous subtrajectory i in the ground truth set Cg , and

Co,i denotes the corresponding subtrajectory i in the set Co,

which is returned by a detection method. We employ Jaccard

to measure the ratio of intersection over union of the road

segments between Cg,i and Co,i. (2) We then measure the

similarity between Cg and Co by aggregating the Jaccard

Ji(Cg,i, Co,i).

Ji(Cg,i, Co,i) =
|Cg,i ∩ Co,i|
|Cg,i ∪ Co,i|

, J (Cg, Co) =

|Cg|∑
i=1

Ji(Cg,i, Co,i).

(6)

Note that the intersection and union operations between

Cg,i and Co,i are based on 1’s of the road segments of

the manually labeled anomalous trajectory i. (3) Finally, we

define the precision (P) and recall (R) by following [40], [41],

and compute the F1-score accordingly.

P =
J (Cg, Co)

|Co|
, R =

J (Cg, Co)

|Cg|
, F1 = 2× P× R

P + R

. (7)

Second, we further design a variant of F1-score. Specifically,

we re-define the Jaccard similarity Ji(Cg,i, Co,i) to be 1

if it is above a threshold ϕ and 0 otherwise. Then, we

compute the F1-score by Equation 7 based on the re-defined

Jaccard similarity. We call this variant of F1-score TF1-

score, where the threshold ϕ is naturally set to 0.5 in this

paper. The intuition of TF1-score is to count only those

detected anomalous subtrajectories which are aligned with

real anomalous subtrajectories sufficiently.

Evaluation Platform. We implement RL4OASD and other

baselines in Python 3.6 and Tensorflow 1.8.0. The experiments

are conducted on a server with 10-cores of Intel(R) Core(TM)

i9-9820X CPU @ 3.30GHz 64.0GB RAM and one Nvidia

GeForce RTX 2080 GPU. The labeled datasets and codes can

be downloaded via the link
4

to reproduce our work.

B. Effectiveness Evaluation
Comparison with existing baselines. We study the

anomalous subtrajectory detection with our labeled datasets.

In Table III, we report the effectiveness in terms of different

trajectory lengths, e.g., we manually partition the Chengdu

dataset into four groups, i.e., G1, G2, G3 and G4, such that

the lengths in a groups are G1 < 15, 15 ≤ G2 < 30,

30 ≤ G3 < 45 and G4 ≥ 45. We also report the overall

effectiveness in whole datasets. The results clearly show that

RL4OASD consistently outperforms baselines in terms of

different settings. Specifically, it outperforms the best baseline

(i.e., CTSS) for around 20% and 15% (resp. 30% and 28%) in

terms of F1-score and TF1-score in Chengdu (resp. Xi’an)

regarding the overall effectiveness, and the improvement is

around 5%-26% and 1%-19% (resp. 26%-47% and 22%-45%) in

terms of F1-score and TF1-score in Chengdu (resp. Xi’an)

for different groups. A possible reason is that CTSS needs a

threshold to extract those anomalous parts with the anomaly

scores larger than the threshold. However, the threshold

is hard to set appropriately for all complex traffic cases.

RL4OASD demonstrates its superioriority, which is mainly

due to its data-driven nature for the anomalous subtrajectory

detection task. Besides, we observe that RL4OASD performs

similar trends of results in terms of F1-score and TF1-score,

which shows the genericity of our method.

4
https://github.com/lizzyhku/OASD

TABLE III

Effectiveness comparison with existing baselines (Left: F1-score, right: TF1-score).

Methods Chengdu Xi’an

Trajectory

Length
G1 G2 G3 G4 Overall G1 G2 G3 G4 Overall

IBOAT [8] 0.534 0.541 0.538 0.544 0.519 0.525 0.674 0.781 0.539 0.550 0.556 0.615 0.493 0.495 0.497 0.548 0.493 0.463 0.506 0.519

DBTOD [9] 0.523 0.533 0.531 0.537 0.515 0.522 0.669 0.750 0.530 0.542 0.519 0.523 0.448 0.381 0.441 0.380 0.483 0.452 0.433 0.424

GM-VSAE [11] 0.375 0.383 0.493 0.498 0.507 0.513 0.669 0.750 0.452 0.461 0.270 0.272 0.361 0.308 0.389 0.332 0.421 0.388 0.363 0.328

SD-VSAE [11] 0.375 0.383 0.463 0.466 0.416 0.406 0.555 0.612 0.452 0.461 0.270 0.272 0.353 0.300 0.385 0.329 0.386 0.360 0.350 0.319

SAE [11] 0.375 0.383 0.461 0.463 0.413 0.406 0.536 0.603 0.451 0.461 0.270 0.272 0.359 0.300 0.386 0.329 0.410 0.379 0.363 0.328

VSAE [11] 0.375 0.383 0.491 0.496 0.493 0.497 0.655 0.734 0.448 0.457 0.262 0.265 0.340 0.296 0.371 0.316 0.369 0.345 0.339 0.309

CTSS [10] 0.730 0.786 0.708 0.764 0.625 0.657 0.741 0.845 0.706 0.758 0.657 0.669 0.637 0.688 0.636 0.689 0.672 0.700 0.658 0.689

RL4OASD 0.888 0.905 0.892 0.910 0.725 0.720 0.774 0.853 0.854 0.870 0.964 0.973 0.864 0.888 0.809 0.843 0.844 0.870 0.857 0.883

TABLE IV

Ablation study for RL4OASD.
Effectiveness F1-score

RL4OASD 0.854
w/o noisy labels 0.626

w/o road segment embeddings 0.828

w/o RNEL 0.816

w/o DL 0.737

w/o local reward 0.850

w/o global reward 0.849

w/o ASDNet 0.508

only transition frequency 0.643

Ablation study. We conduct an ablation study to show

the effects of some components in RL4OASD, including (1)

the noisy labels, (2) pre-trained road segment embeddings,

(3) Road Network Enhanced Labeling (RNEL), (4) Delayed

Labeling (DL), (5) local reward, (6) global reward, (7) ASDNet

and (8) transition frequency. In particular, for (1), we replace

the noisy labels with random labels; for (2), we randomly

initialize the embeddings of road segments to replace the pre-

trained embeddings provided by Toast [36]; for (3), we drop

the RNEL, and the model needs to take the action at each road

segment without being guided by road networks; for (4), we

drop the DL, and no delay mechanism is involved for labeling

road segments; for (5), we drop the local reward, which

encourages the continuity of refined labels; for (6), we drop

the global reward, which provides some feedback indicating

the quality of refined labels; for (7), we replace ASDNet with

an ordinary classifier to follow the outputs of RSRNet, and

train the classifier with noisy labels; for (8), we only use

the transition frequency to detect anomalous subtrajectories,

which can be regarded as the simplest method.

In Table IV, we observe each component benefits the over-

all effectiveness, where the ASDNet contributes quite much,

because it is utilized to refine the labels which are utilized to

train the RSRNet, and find out the anomalous subtrajectories.

Besides, we note that (1) noisy labels, (4) Delayed Labeling

(DL) and (8) transition frequency also contribute much to

the performance of RL4OASD. As the aforementioned, noisy

labels provide a necessary warm-start before the training

with the improvement of around 36%, the delayed labeling

provides the continuity of anomalous subtrajectories with the

improvement of around 16%, and if we only use the transition

frequency for the detection task, the performance degrades

a lot by around 25%. In addition, we also verify the effect of

(2) pre-trained road segment embeddings, (3) RNEL, (5) local

reward and (6) global reward. From Table IV, we observe that

IBOAT
DBTOD

GM-VSAE
SD-VSAE

SAE
VSAE

CTSS
RL4OASD

Chengdu Xi'an
Overall efficiency

10 2

10 1

100

A
ve

ra
ge

 ru
nt

im
e

pe
r p

oi
nt

 (m
s)

IBOAT GM-VSAE SAE CTSS

Fig. 3. Overall detection efficiency.

road segment embeddings benefit the overall effectiveness by

providing the traffic context from road networks, and local

reward and global reward provide some feedback signals,

which guide the training of RSRNet to further provide better

states for ASDNet. In addition, with the RNEL, we notice an

effectiveness improvement of around 5%, since it simplifies

the cases of making decisions and the model becomes easier

to train.

C. Parameter Study

Varying parameter α, δ and D. We study the effects

of parameter α for constructing noisy labels, parameter δ
for constructing normal route features and parameter D for

controlling the number of delayed road segments in the

delaying mechanism. The results and detailed description are

put into the technical report [42] due to the page limit.

Overall, we observe that a moderate setting (with α = 0.5,

δ = 0.4, and D = 8) contributes to the best effectiveness.

D. Efficiency Study

Overall detection. Figure 3 reports the online detection

efficiency in terms of average running time per point on

both Chengdu and Xi’an datasets. We provide the detailed

analysis as follows.

We observe the running time in Chengdu is larger than

in Xi’an, because the trajectories are generally shorter in

Xi’an. We observe DBTOD runs the fastest on both datasets,

because it is a light model with low-dimensional embeddings

of some cheaper features such as road-level and turning angle

for the detection, which can be accomplished very quickly,

while RL4OASD involves more operations, including an

LSTM-based RSRNet to capture features, and an RL-based AS-

DNet to label each road segment. CTSS runs the slowest since

it involves discrete Frechet distance to compute the deviation

between a target trajectory and a given reference trajectory,

which suffers from a quadratic time complexity. In addition,

for four learning-based methods GM-VSAE, SD-VSAE, SAE

and VSAE that are proposed for trajectory detection via

the generation scheme, we observe SD-VSAE and VSAE are

generally faster than the others (i.e., GM-VSAE and SAE).

This is because SAE is proposed with a traditional Seq2Seq

structure, where it involves the operations of encoding and

decoding, which needs to scan a trajectory twice. Compared

with SAE, VSAE is free of the encoding step, and only

involves the decoding step to detect some possible anomalies.

For SD-VSAE, it is a fast version of GM-VSAE, where it

only predicts one Gaussian component in the encoding (or

inference) step with its SD module; however, GM-VSAE needs

several components in the encoding step, and uses all of

them to detect anomalies in the decoding. The results are

consistent with the findings that are reported in [11]. Overall,

RL4OASD runs reasonably fast and would meet the practical

needs, e.g., it takes less than 0.1ms to process each point,

which is 20,000 times faster than the practical sampling rate

of the trajectory data (2s).

G1 G2 G3 G4

Grouping

10-2

100

102

A
ve

ra
ge

 r
un

tim
e

pe
r

tr
aj

ec
to

ry
 (

m
s)

IBOAT
DBTOD

GM-VSAE
SD-VSAE

SAE
VSAE

CTSS
RL4OASD

G1 G2 G3 G4

Grouping

10-2

10-1

100

101

102

A
ve

ra
ge

 r
un

tim
e

pe
r

tr
aj

ec
to

ry
 (

m
s) IBOAT

DBTOD

GM-VSAE
SD-VSAE

SAE
VSAE

CTSS
RL4OASD

(a) Chengdu (b) Xi’an

Fig. 4. Detection scalability.

Detection scalability. Further, we study the scalability for

detecting ongoing trajectories in terms of four trajectory

groups with different lengths. In Figure 4, we report the

average running time per trajectory on both datasets. We

observe the CTSS runs slowest, and its disparity between

others becomes larger as the trajectory length increases.

This is because CTSS involves the trajectory similarity with

discrete Frechet distance to detect possible anomalies, the

trend is consistent with its time complexity. DBTOD is a

light model, which consistently runs the fastest. However, in

terms of the effectiveness comparison reported in Table III,

we note that DBTOD is not a good model for the subtra-

jectory detection task, though it runs faster than RL4OASD.

In general, RL4OASD shows similar trends as others, and

scales well with the trajectory length grows. This is because

RL4OASD involves the graph structure of road networks for

labeling road segments (i.e., RNEL), and the time of taking

actions can be saved accordingly.

E. Case Study

We investigate representative detour cases in Chengdu.

We visualize with the green lines the detours labeled as/by

Ground truth, CTSS and RL4OASD. Here, we choose CTSS

0.055 0.060 0.065 0.070 0.075
+1.04e2

0.004

0.005

0.006

0.007

0.008

0.009

+3.065e1

S
D

S
D

SD-Pair: (1000, 180)

normal route
detour route
labeled detour

0.055 0.060 0.065 0.070 0.075
+1.04e2

0.004

0.005

0.006

0.007

0.008

0.009

+3.065e1

S
D

S
D

SD-Pair: (1000, 180)

normal route
detour route
detected detour

0.055 0.060 0.065 0.070 0.075
+1.04e2

0.004

0.005

0.006

0.007

0.008

0.009

+3.065e1

S
D

S
D

SD-Pair: (1000, 180)

normal route
detour route
detected detour

(a) Ground truth (F1=1.0) (b) CTSS (F1=0.792) (c) RL4OASD (F1=1.0)

Fig. 5. Case study, blue lines: the normal routes traveled by most of tra-

jectories; red dashed lines: the routes contained anomalous subtrajectories;

red points: the intersections on road networks; green lines: the detected

anomalous subtrajectories.

TABLE V

Preprocessing and training time, the map matching [34] is in C++,

noisy labeling and training are in Python.

Data size 4,000 6,000 8,000 10,000 12,000

Preprocessing

time

Map

matching (s)
15.82 23.17 30.41 39.95 48.74

Noisy

labeling (s)
20.31 28.40 36.25 41.21 46.82

Training time (hours) 0.10 0.14 0.17 0.21 0.25

F1-score 0.723 0.786 0.821 0.854 0.854

for comparison, since it shows the best effectiveness among

baselines. In Figure 5, it illustrates the case of two detours in

a route, we observe RL4OASD detects the detours accurately

with F1-score=1.0; however, CTSS fails to detect the starting

position of the detection. This is because CTSS measures the

trajectory similarity via Frechet distance between the normal

trajectory (blue) and the current ongoing trajectory (red) at

each timestamp, where a detour may already happen though

the ongoing trajectory is still similar to the reference at

several starting positions. More results are illustrated in [42].

F. Preprocessing and Training Time

With the default setup in Section V-A, we study the pre-

processing time (i.e., map-matching and noisy labeling) and

training time of RL4OASD in Table V, by varying the data

size from 4,000 trajectories to 12,000 trajectories, and report

the time costs and F1-scores. Overall, it takes less than two

minutes in the preprocessing and around 0.2 hours to obtain

a satisfactory model, and the scale is linear with the data size,

which indicates the capability of RL4OASD for large-scale

trajectory data. Here, we choose 10,000 trajectories to train

RL4OASD, which provides a reasonable trade-off between

effectiveness and training time cost.

G. Detection in Varying Traffic Conditions

By following the setting in [11], we first sort the tra-

jectories by their starting timestamps within one day, and

split all the sorted trajectories into ξ partitions. For example,

when ξ is set 4, we would have 4 parts within one day

from Part 1 (i.e., 00:00 - 06:00, the earliest) to Part 4 (i.e.,

18:00 - 24:00, the latest). Here, we consider two models,

namely RL4OASD-P1 and RL4OASD-FT, to show the

effectiveness of our online learning strategy for the varying

traffic conditions. For RL4OASD-P1, we train it on Part

1 and directly apply it to all parts. For RL4OASD-FT, we

train it on Part 1, and keep updating it (i.e., fine-tuning using

stochastic gradient descent) for other parts.

1 2 3 4 6 8 12 24
0.6

0.65

0.7

0.75

0.8

0.85

0.9
F

1-
sc

or
e

RL4OASD-FT

1 2 3 4 6 8 12 24

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 tr
ai

ni
ng

 ti
m

e
(h

)

RL4OASD-FT

(a) F1-score varying ξ (b) Training time varying ξ

Par
t 1

Par
t 2

Par
t 3

Par
t 4

Par
t 5

Par
t 6

Par
t 7

Par
t 8

Training data

0

0.2

0.4

0.6

0.8

1

F
1-

sc
or

e

RL4OASD-P1
RL4OASD-FT

Par
t 1

Par
t 2

Par
t 3

Par
t 4

Par
t 5

Par
t 6

Par
t 7

Par
t 8

Training data

0

0.05

0.1

0.15

0.2

T
ra

in
in

g
tim

e
(h

)
RL4OASD-FT

(c) F1-score (ξ = 8) (d) Training time (ξ = 8)

Fig. 6. RL4OASD with or without fine-tuning and the training times.

TABLE VI

Cold-start problem in RL4OASD.

Drop rate 0.0 0.2 0.4 0.6 0.8

F1-score 0.854 0.854 0.852 0.831 0.803

We first study how to set a proper ξ. We vary the ξ from

1 to 24, and the average F1-scores over all parts and the

corresponding training times are reported in Figure 6(a) and

(b), respectively. We observe that the performance fluctuates

as ξ increases, and the corresponding training time decreases

because with more data parts, the size of training data for

each part becomes less. We choose the ξ = 8, since it leads to

the best effectiveness (i.e., F1-score=0.867) with the average

training time below 0.04 hours, which is much smaller than

the duration of a time period (i.e., 24/8 = 3 hours).

With the setting of ξ = 8, we further compare

RL4OASD-FT with RL4OASD-P1, and report the F1-score

for each part in Figure 6(c). We observe that the performance

of RL4OASD-P1 degrades on Part 2–7, which can be

attributed to the concept drift. In contrast, RL4OASD-FT
improves the performance when new trajectories are being

recorded to train. In addition, our model is also able to handle

situations with the traffic condition updated very frequently

(e.g., hourly) by training from the newly recorded trajectory

data. To see this, we report the training time for each part in

Figure 6(d). It normally takes below 0.05 hours to update the

model for each part, which largely meets the practical needs

(e.g., far below the duration of each time period).

We also conduct a case study to illustrate the effectiveness

of RL4OASD-FT in Figure 7. We observe the normal route

and anomalous route are exchanged from Part 1 to Part 2.

With the online learning strategy, RL4OASD-FT can still

detect the detour on Part 2 with F1-score=1.0; however,

RL4OASD-P1 causes the false-positive in Figure 7(c), be-

cause its policy is only trained on Part 1.

H. Cold-start Problem with Insufficient Historical Trajectories
We study the effect of cold-start problem, where we vary

0.004 0.005 0.006 0.007 0.008 0.009 0.010
+1.0404e2

0.003

0.004

0.005

0.006

0.007

0.008

+3.065e1
S

D

SD-Pair: (453, 4471)

normal route
detour route
detected detour

0.004 0.005 0.006 0.007 0.008 0.009 0.010
+1.0404e2

0.003

0.004

0.005

0.006

0.007

0.008

+3.065e1
S

D

SD-Pair: (453, 4471)

normal route
detour route
detected detour

(a) RL4OASD-P1, F1=1.0 (b) RL4OASD-FT, F1=1.0

0.004 0.005 0.006 0.007 0.008 0.009 0.010
+1.0404e2

0.003

0.004

0.005

0.006

0.007

0.008

+3.065e1
S

D

SD-Pair: (453, 4471)

normal route
detected detour
detour route

0.004 0.005 0.006 0.007 0.008 0.009 0.010
+1.0404e2

0.003

0.004

0.005

0.006

0.007

0.008

+3.065e1
S

D

SD-Pair: (453, 4471)

normal route
detour route
detected detour

(c) RL4OASD-P1, F1=0.78 (d) RL4OASD-FT, F1=1.0

Fig. 7. Concept drift, where (a)-(b) for Part 1 and (c)-(d) for Part 2.

the number of historical trajectories within the SD pairs with

a drop rate parameter. For example, if the drop rate is set to

0.2, we randomly remove 20% trajectories for the SD pairs,

and the corresponding results are reported in Table VI. We

observe that the effectiveness of RL4OASD is not affected

by the cold-start problem much. For example, the model

only degrades by 6% when 80% of historical trajectories are

removed. This is possibly because the normal route feature

is computed in a relative way (e.g., by a fraction between 0

and 1), and the normal routes can still be identified when

only few trajectories within a SD pair are available.

VI. CONCLUSIONS

In this paper, we study the problem of online anoma-

lous subtrajectory detection on road networks and pro-

pose the first deep reinforcement learning based solution

called RL4OASD. RL4OASD is a data-driven approach that

can be trained without labeled data. We conduct exten-

sive experiments on two real-world taxi trajectory datasets

with manually labeled anomalies. The results demonstrate

that RL4OASD consistently outperforms existing algorithms,

runs comparably fast, and supports the detection in varying

traffic conditions. In the future, we will explore the cold-start

problem when the historical trajectories are not sufficient.

Acknowledgments: The project is partially supported by the

funding from HKU-SCF FinTech Academy and the ITF project

(ITP/173/18FP). This research/project is supported by the Na-

tional Research Foundation, Singapore under its AI Singapore

Programme (AISG Award No: AISG-PhD/2021-08-024[T] and

AISG Award No: AISG2-TC-2021-001). This research is also

supported by the Ministry of Education, Singapore, under its

Academic Research Fund (Tier 2 Awards MOE-T2EP20220-

0011 and MOE-T2EP20221-0013). Any opinions, findings and

conclusions or recommendations expressed in this material

are those of the author(s) and do not reflect the views of

National Research Foundation, Singapore and Ministry of

Education, Singapore.

References

[1] H. Yuan, G. Li, Z. Bao, and L. Feng, “An effective joint prediction model

for travel demands and traffic flows,” in ICDE. IEEE, 2021, pp. 348–359.

[2] S. Feng, L. V. Tran, G. Cong, L. Chen, J. Li, and F. Li, “Hme: A hyperbolic

metric embedding approach for next-poi recommendation,” in SIGIR,

2020, pp. 1429–1438.

[3] T. Seemann, C. R. Lane, N. L. Sherry, S. Duchene, A. Gonçalves da

Silva, L. Caly, M. Sait, S. A. Ballard, K. Horan, M. B. Schultz et al.,
“Tracking the covid-19 pandemic in australia using genomics,” Nature
communications, vol. 11, no. 1, pp. 1–9, 2020.

[4] C. Huang, J. Zhang, Y. Zheng, and N. V. Chawla, “Deepcrime: Attentive

hierarchical recurrent networks for crime prediction,” in CIKM, 2018,

pp. 1423–1432.

[5] Z. Yuan, X. Zhou, and T. Yang, “Hetero-convlstm: A deep learning ap-

proach to traffic accident prediction on heterogeneous spatio-temporal

data,” in KDD, 2018, pp. 984–992.

[6] Y. Ning, L. Zhao, F. Chen, C.-T. Lu, and H. Rangwala, “Spatio-temporal

event forecasting and precursor identification,” in KDD, 2019, pp. 3237–

3238.

[7] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, and S. Li, “Real-

time detection of anomalous taxi trajectories from gps traces,” in

International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services. Springer, 2011, pp. 63–74.

[8] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, S. Li, and Z. Wang,

“iboat: Isolation-based online anomalous trajectory detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp.

806–818, 2013.

[9] H. Wu, W. Sun, and B. Zheng, “A fast trajectory outlier detection

approach via driving behavior modeling,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, 2017,

pp. 837–846.

[10] D. Zhang, Z. Chang, S. Wu, Y. Yuan, K.-L. Tan, and G. Chen, “Con-

tinuous trajectory similarity search for online outlier detection,” IEEE
Transactions on Knowledge and Data Engineering, 2020.

[11] Y. Liu, K. Zhao, G. Cong, and Z. Bao, “Online anomalous trajectory

detection with deep generative sequence modeling,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020, pp.

949–960.

[12] L. Song, R. Wang, D. Xiao, X. Han, Y. Cai, and C. Shi, “Anomalous

trajectory detection using recurrent neural network,” in International
Conference on Advanced Data Mining and Applications. Springer, 2018,

pp. 263–277.

[13] X. Li, J. Han, S. Kim, and H. Gonzalez, “Roam: Rule-and motif-based

anomaly detection in massive moving object data sets,” in Proceedings
of the 2007 SIAM International Conference on Data Mining. SIAM, 2007,

pp. 273–284.

[14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,

“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, 2014, pp. 387–395.

[15] J.-G. Lee, J. Han, and X. Li, “Trajectory outlier detection: A partition-

and-detect framework,” in 2008 IEEE 24th International Conference on
Data Engineering. IEEE, 2008, pp. 140–149.

[16] D. Zhang, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li, “ibat: detecting

anomalous taxi trajectories from gps traces,” in Proceedings of the 13th
international conference on Ubiquitous computing, 2011, pp. 99–108.

[17] J. Zhu, W. Jiang, A. Liu, G. Liu, and L. Zhao, “Time-dependent popular

routes based trajectory outlier detection,” in International Conference
on Web Information Systems Engineering. Springer, 2015, pp. 16–30.

[18] Z. Lv, J. Xu, P. Zhao, G. Liu, L. Zhao, and X. Zhou, “Outlier trajectory

detection: A trajectory analytics based approach,” in International
Conference on Database Systems for Advanced Applications. Springer,

2017, pp. 231–246.

[19] P. Banerjee, P. Yawalkar, and S. Ranu, “Mantra: a scalable approach

to mining temporally anomalous sub-trajectories,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 1415–1424.

[20] K. Gray, D. Smolyak, S. Badirli, and G. Mohler, “Coupled igmm-gans

for deep multimodal anomaly detection in human mobility data,” arXiv
preprint arXiv:1809.02728, 2018.

[21] Y. Ge, H. Xiong, C. Liu, and Z.-H. Zhou, “A taxi driving fraud detection

system,” in 2011 IEEE 11th International Conference on Data Mining.

IEEE, 2011, pp. 181–190.

[22] X. Li, Z. Li, J. Han, and J.-G. Lee, “Temporal outlier detection in

vehicle traffic data,” in 2009 IEEE 25th International Conference on Data
Engineering. IEEE, 2009, pp. 1319–1322.

[23] Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee, “Top-

eye: Top-k evolving trajectory outlier detection,” in Proceedings of
the 19th ACM international conference on Information and knowledge
management, 2010, pp. 1733–1736.

[24] Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang, “Detecting moving

object outliers in massive-scale trajectory streams,” in Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2014, pp. 422–431.

[25] Z. Zhu, D. Yao, J. Huang, H. Li, and J. Bi, “Sub-trajectory-and trajectory-

neighbor-based outlier detection over trajectory streams,” in Pacific-
Asia Conference on Knowledge Discovery and Data Mining. Springer,

2018, pp. 551–563.

[26] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[27] M.-h. Oh and G. Iyengar, “Sequential anomaly detection using inverse

reinforcement learning,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & data mining, 2019,

pp. 1480–1490.

[28] C. Huang, Y. Wu, Y. Zuo, K. Pei, and G. Min, “Towards experienced

anomaly detector through reinforcement learning,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[29] Z. Wang, C. Long, G. Cong, and Y. Liu, “Efficient and effective similar

subtrajectory search with deep reinforcement learning,” Proceedings of
the VLDB Endowment, vol. 13, no. 12, pp. 2312–2325, 2020.

[30] Z. Wang, C. Long, and G. Cong, “Similar sports play retrieval with

deep reinforcement learning,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[31] ——, “Trajectory simplification with reinforcement learning,” in 2021
IEEE 37th International Conference on Data Engineering (ICDE). IEEE,

2021, pp. 684–695.

[32] Z. Wang, C. Long, G. Cong, and Q. Zhang, “Error-bounded online

trajectory simplification with multi-agent reinforcement learning,” in

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, 2021, pp. 1758–1768.

[33] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy

gradient methods for reinforcement learning with function approxi-

mation,” in Advances in neural information processing systems, 2000,

pp. 1057–1063.

[34] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating

hidden markov model with precomputation,” IJGIS, vol. 32, no. 3, pp.

547–570, 2018.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[36] Y. Chen, X. Li, G. Cong, Z. Bao, C. Long, Y. Liu, A. Chandran, and

R. Ellison, “Robust road network representation learning: When traffic

patterns meet traveling semantics,” 2021.

[37] T. S. Jepsen, C. S. Jensen, and T. D. Nielsen, “Graph convolutional

networks for road networks,” in Proceedings of the 27th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, 2019, pp. 460–463.

[38] M.-x. Wang, W.-C. Lee, T.-y. Fu, and G. Yu, “Learning embeddings of

intersections on road networks,” in Proceedings of the 27th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, 2019, pp. 309–318.

[39] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,

pp. 229–256, 1992.

[40] F. Li, Z. Wang, S. C. Hui, L. Liao, D. Song, J. Xu, G. He, and M. Jia,

“Modularized interaction network for named entity recognition,” in

Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), 2021, pp. 200–209.

[41] F. Li, Z. Wang, S. C. Hui, L. Liao, D. Song, and J. Xu, “Effective named

entity recognition with boundary-aware bidirectional neural networks,”

in Proceedings of the Web Conference 2021, 2021, pp. 1695–1703.

[42] Q. Zhang, Z. Wang, C. Long, C. Huang, S.-M. Yiu, Y. Liu, G. Cong,

and J. Shi, “Online anomalous subtrajectory detection on road net-

works with deep reinforcement learning (technical report),” https:

//zhengwang125.github.io/paper/RL4OASD-TR.pdf.

