
Collectively Simplifying Trajectories in a Database:
A Query Accuracy Driven Approach

(Technical Report)
Zheng Wang∗, Cheng Long∗, Gao Cong∗, Christian S. Jensen†

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore
†Department of Computer Science, Aalborg University, Denmark

zheng011@e.ntu.edu.sg, {c.long,gaocong}@ntu.edu.sg, csj@cs.aau.dk

Abstract—Increasing and massive volumes of trajectory data
are being accumulated that may serve a variety of applica-
tions, such as mining popular routes or identifying ridesharing
candidates. As storing and querying massive trajectory data is
costly, trajectory simplification techniques have been introduced
that intuitively aim to reduce the sizes of trajectories, thus
reducing storage and speeding up querying, while preserving as
much information as possible. Existing techniques rely mainly on
hand-crafted error measures when deciding which point to drop
when simplifying a trajectory. While the hope may be that such
simplification affects the subsequent usability of the data only
minimally, the usability of the simplified data remains largely
unexplored. Instead of using error measures that indirectly may
to some extent yield simplified trajectories with high usability,
we adopt a direct approach to simplification and present the
first study of query accuracy driven trajectory simplification,
where the direct objective is to achieve a simplified trajectory
database that preserves the query accuracy of the original
database as much as possible. Specifically, we propose a multi-
agent reinforcement learning based solution with two agents
working cooperatively to collectively simplify trajectories in a
database while optimizing query usability. Extensive experiments
on four real-world trajectory datasets show that the solution
is capable of consistently outperforming baseline solutions over
various types of queries with different dynamics.

Index Terms—trajectory data, trajectory simplification, query
processing, reinforcement learning

I. INTRODUCTION

A trajectory is a sequence of time-stamped locations that de-
scribe the movement of an object over time. Massive amounts
of trajectory data are being accumulated and used in diverse
applications, such as discovering popular routes in a city [1],
analyzing animal migration patterns [2], and performing sports
analytics [3]. The accumulation of trajectory data [4] intro-
duces at least two challenges [5], [6]: (1) storing the data
is expensive, and (2) querying the data is time-consuming.
These challenges can be addressed by conducting trajectory
simplification, which aims to drop points from trajectories
to save the storage cost and speed up query processing. The
underlying rationale is that not all points in a trajectory carry
equally important information, so that dropping unimportant
ones may be acceptable. For example, if the location of an
object is sampled regularly and the object does not move
for a while then only the first and last positions during the

period of inactivity are important, and those in-between may
be dropped without loosing information. Next, the efficiency of
query processing is improved, at the expense of query results
becoming approximate.

Indeed, the extent to which a collection of simplified tra-
jectories enables accurate query results has been used widely
as a measure of the quality of a simplification technique
in empirical studies of trajectory simplification [7], [5], [6].
For example, Zhang et al. [6] evaluate existing simplification
techniques in terms of their ability to produce simplified
trajectories that affect the accuracy of range, kNN, and join
queries as well as clustering minimally. While there are many
proposals for trajectory simplification [8], [9], [10], [11], [12],
[13], [14], they all assume a storage budget and aim to produce
simplified trajectories that minimize the difference from the
original trajectories according to a given difference notion. No
proposals aim to optimize directly the query accuracy offered
by the simplified trajectories. We call this line of study Error-
Driven Trajectory Simplification (EDTS).

In addition, existing simplification techniques are local in
nature and operate on a per-trajectory basis as opposed to be-
ing global in nature and operating on a database of trajectories.
Specifically, they aim to simplify a given trajectory T within a
budget r · |T |, where r ∈ (0, 1] is the compression ratio. When
these techniques are used to simplify a database of trajectories
according to a compression ratio r, they simplify each trajec-
tory in the database separately according to compression ratio
r. This is likely sub-optimal in cases where trajectories have
different sampling rates or different complexities. Intuitively,
trajectories with higher sampling rates or lower complexity are
candidates for simplification with larger compression ratios.

Therefore, we propose a new trajectory simplification prob-
lem, called Query accuracy Driven Trajectory Simplification
(QDTS). Given a trajectory database D and a storage budget,
the problem is to find a simplified trajectory database D′ that
preserves the accuracy of query results as much as possible,
compared to the query results on D. QDTS differs from the
existing EDTS problem. First, it considers a different objective
of trajectory simplification, namely that of preserving query
accuracy directly, rather than through minimizing an error
measure, as in the EDTS problem. Second, it is global in



nature and takes a trajectory database as input and outputs a
simplified trajectory database that satisfies a specified storage
budget as a whole, instead of simplifying each trajectory
in isolation according to a budget, as do existing EDTS
techniques [8], [9], [4].
Challenges. An immediate solution to the QDTS problem is
to reduce it (i.e., a database-level simplification problem) to
a trajectory-level problem by applying simplification to each
trajectory separately with a proportional budget. Specifically,
it simplifies each trajectory T with the budget of r · |T |. It is
obvious that the resulting simplified database would contain M
simplified trajectories and have at most r ·

∑
T∈D |T | = r ·N

points, where N denotes the total number points in the
database. While this solution needs minimal design efforts, it
suffers from two main issues. Issue 1: Uniform compression
ratio: It applies the same compression ratio to each trajectory,
which would be sub-optimal for trajectories with different
sampling rates and/or different complexities. Issue 2: Query
accuracy unawareness: Existing algorithms [8], [9], [10], [11],
[12], [13], [14] (all of which operate at trajectory-level) aim
to optimize some form of error metric that quantifies the
difference between an original and a simplified trajectory. As
a consequence, simply using any of these algorithms cannot
help to optimize directly the query accuracy of the simplified
database.

Another solution is to consider all trajectories in the
database D collectively during the course of simplification.
Consider a top-down approach, in which we start with the
most simplified database, i.e., each simplified trajectory T ′

of an original trajectory T contains only the first and last
points of T . We then iteratively introduce points from the
original database according to some selection criterion until
the budget is exhausted. Alternatively, we can adopt a bottom-
up approach, in which we start from D and iteratively drop
points until the remaining points are within the budget. This
solution considers all trajectories collectively when simplifying
trajectories, enabling different trajectories to be simplified with
different compression ratios depending on their complexities.
Therefore, it avoids the first issue mentioned above. However,
this solution still does not contend with the second issue.
Furthermore, the solution operates at the database level, whose
scale is typically much larger than that of a single trajectory.
For example, the Geolife dataset used in our experiment con-
tains millions of points, while individual trajectories contain
only around one thousand points. This brings up a third issue.
Issue 3: Lack of scalability: Operating at the database level,
the solution needs to repeatedly choose a point from among a
very large set of points.
New Solution. Motivated by the above discussion, we pro-
pose a new solution called RL4QDTS for trajectory database
simplification, which avoids all the three issues. RL4QDTS
has two core ideas. First, it considers all trajectories in the
database collectively for simplification. Specifically, it starts
with the most simplified database, then introduces original
points into the simplified database iteratively until its budget is
exhausted. For better efficiency, it uses an index that partitions

the database into sub-spaces, called spatio-temporal cubes.
Whenever it needs to choose a point to introduce into the
database, it first chooses a cube based on the index and
then chooses a point in the cube. To partition a database
of trajectories, one immediate idea is to partition along the
spatial and temporal dimensions with a predefined granularity,
e.g., setting a grid size for the spatial dimensions and a
time duration for the temporal dimension. Nevertheless, the
granularity is hard to set appropriately and is unlikely to work
across databases. Small cubes (corresponding to a fine granu-
larity) contain few candidate points, making it difficult to find
good points to introduce. Large cubes contain many points,
making it costly to choose one point within a cube. Therefore,
RL4QDTS builds an octree (a three-dimensional variant of the
quadtree for spatio-temporal points) to partition the database
into cubes. The octree provides different resolutions of data
cubes organized in a tree structure, making it is possible to
choose cubes with different sizes flexibly and adaptively by
traversing the tree from the root node to an appropriate node.
We adopt the octree for its simplicity and leave other indexes,
e.g., kd-tree [15], for future exploration.

Second, RL4QDTS leverages multi-agent reinforcement
learning to choose a point iteratively such that the query
accuracy based on the simplified database involving the cho-
sen points is optimized. Specifically, it employs an agent
(called Agent-Cube) to find an octree node with a cube of
an appropriate size. Then, it employs another agent (called
Agent-Point) to choose a point in the cube chosen by Agent-
Cube and introduces the point into the simplified database.
Specifically, the two agents employ Markov decision processes
(MDP) [16] that are designed such that the two agents optimize
cooperatively the query accuracy on the simplified database.
The RL4QDTS algorithm then leverages the learned polices
of the two agents for simplifying a trajectory database. In
summary, the first idea enables a solution that avoids the first
and third issues, and the second idea is to address the second
issue.

Overall, we make the following contributions.
• We propose the QDTS problem that aims to find a simpli-

fied trajectory database within a given storage budget that
preserves the query accuracy on the simplified database
as much as possible. This is the first systematic study of
this line of trajectory simplification. (Section III)

• We develop a multi-agent reinforcement learning based
solution called RL4QDTS to the problem. It simplifies
a database of trajectories collectively with the aim of
optimizing the query accuracy on the simplified database,
while leveraging an index on the trajectory data for better
efficiency. We show that the objective of RL4QDTS is
well aligned with that of the QDTS problem. (Section IV)

• We conduct experiments on four real-world trajectory
datasets, showing that RL4QDTS consistently outper-
forms existing EDTS solutions across two types of adap-
tions, four error measures, and varying storage budgets
for five query operators. For example, it achieves the
improvement of up to 35% for range query, 41% and 28%



for two kinds of kNN query, 35% for similarity query and
40% for clustering than the best baselines. (Section V)

II. RELATED WORK

Error-Driven Trajectory Simplification. The error-driven
trajectory simplification aims to simplify a trajectory within
a given storage budget and to minimize an error measure of
the simplified trajectory. Many studies have been conducted
on this problem, among which some focus on the batch mode
(where full access to a trajectory is attained throughout the
process) [8], [9], [10], [11] and others on the online mode
(where a trajectory is inputted in an online fashion and those
points that have been dropped are no longer accessible) [12],
[13], [14]. We review the studies on the batch mode, which is
the focus of this paper, as follows. Specifically, Top-Down [8]
adapts the traditional Douglas-Peucker algorithm [17]. The
algorithm starts with two points (the first and last) of a trajec-
tory. Then, it repeatedly inserts a point with the largest error
until the size of the simplified trajectory reaches the storage
budget. Bottom-Up [9] adopts a reverse strategy. It scans all
points of the input trajectory and repeatedly drops the point
with the smallest error until the number of remaining points
is within the storage budget. Long et al. [10] propose Span-
Search, which is designed specifically to preserve direction
information in trajectory simplification. Recently, Wang et
al. [11] propose a reinforcement learning based method called
RLTS+ for trajectory simplification. It adopts the Bottom-Up
strategy and drops points based on a learned policy instead of
using the heuristic rules seen in previous studies.

Overall, the above studies aim to minimize a given error
measure while simplifying a trajectory. However, they largely
disregard data usability as an objective of simplification algo-
rithms. As a matter of fact, one of the main motivations for
simplification is to improve query efficiency. Consequently,
data usability should be treated as a key factor to indicate
the quality of trajectory simplification. Indeed, data usability
has been used to compare existing simplification algorithms
in several empirical studies [7], [6], [5]. An early study [7]
evaluates several error measures in trajectory simplification
and analyzes the soundness of the measures for queries. Zhang
et al. [6] consider four spatio-temporal queries (i.e., range
query, kNN query, join query, and clustering) on a trajectory
database and design the corresponding measures to evaluate
the quality of existing trajectory simplification algorithms. A
recent evaluation study [5] verifies the query qualities of error-
bounded trajectory simplification algorithms [18], [19], [20],
[21] that simplify a trajectory with a given error tolerance and
aim to minimize the size of a simplified trajectory. However,
data usability is only used as evaluation measures in these
studies [7], [6], [5] to understand how well the existing
simplification algorithms support various types of queries, but
not considered in simplification algorithm design. We note that
existing optimal algorithms [22] for EDTS problem cannot be
applied or adapted to the QDTS problem studied in this work.
They are usually dynamic programming based or binary search

based and have high time costs (i.e., cubic time complexity for
quite a few error measures), and thus they are not practical.

Other Types of Trajectory Simplification. Other studies
of trajectory simplification include: (1) studies simplifying a
trajectory such that the error of the simplified trajectory is
bounded and as many points as possible are dropped, con-
sidering batch mode [23], [8], [9], [14] and online mode [4],
[18], [23], [20], [21], (2) studies simplifying a trajectory by
immediately deciding whether to keep or drop an incoming
point (also called dead reckoning) [12], [13], [14], (3) a study
which develops a trajectory quantization method that assigns
a smaller number of bits for each trajectory point - when it
assigns 0 bits to a point, it means to drop the point [24],
and (4) a study which develops optimal algorithms for the
curve simplification under different settings of distance/error
measures and restrictions of points to be kept [25]. These
studies do not return trajectories with sizes bounded by user-
specified parameters and thus cannot be used for our QDTS
problem.

Road Network-based Trajectory Compression. Road
network-based trajectory compression [26], [27], [28], [29]
aims to compress trajectories that are generated by objects
in road networks. Specifically, raw trajectories are initially
map-matched to an underlying road network to obtain map-
matched trajectories that consist of sequences of road seg-
ments. The map-matched trajectories are treated as strings,
where each road segment is considered as a character. Then,
string compression algorithms such as Huffman coding [30]
can be utilized to compress the trajectories with or without
information loss. In contrast, we aim to reduce trajectory
data in its original form, i.e., as a sequence of time-stamped
locations, without the input of a road network.

Reinforcement Learning. Reinforcement Learning (RL) aims
to guide agents on how to take actions to maximize a cu-
mulative reward in an environment, where the environment
is usually modeled as a Markov decision process (MDP),
involving states, actions, and rewards [16]. Recently, RL has
been applied successfully to solve many algorithmic problems,
such as similarity search [31], index learning [32], fleet man-
agement [33], and trajectory simplification [11], [4]. Our study
differs from the existing studies of RL-based trajectory simpli-
fication in three aspects. 1) Our method simplifies trajectories
collectively in a database, rather than simplifying each trajec-
tory with an uniform compression ratio [11]. 2) Our method
optimizes the query accuracy on a simplified database, rather
than minimizing an error measure on a single trajectory [11]
or minimizing the size of a simplified trajectory [4]. Both
existing methods are query un-aware. 3) Our method builds
an octree on the trajectory database and iteratively chooses a
point by choosing a cube with a traversal on an octree and
then choosing a point within the cube. It leverages two agents
for the two decision making processes of choosing a cube and
a point. These decision making processes are different from
those in the existing methods [11], [4] and the corresponding
designs (e.g., those of MDPs) are different.



III. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Trajectories and Segments. A trajectory T is a sequence
of time-stamped points: T = ⟨p1, p2, ..., pn⟩, where n is the
length of T (i.e., n = |T |). Each point pi (1 ≤ i ≤ n) is
a triple pi = (xi, yi, ti), indicating that the moving object
is at location (xi, yi) at time ti. We define the line pipi+1

linking two neighboring points as a segment in the trajectory.
Thus, the trajectory T corresponds to a sequence of segments
p1p2, p2p3, ..., pn−1pn. A trajectory database D consists of
a set of trajectories. We define N to be the total number of
points in D.

Trajectory Simplification and Errors. Trajectory simplifica-
tion aims to eliminate points from a trajectory T to obtain a
simplified trajectory T ′ of the form T ′ = ⟨ps1 , ps2 , ..., psm⟩,
where m ≤ n and 1 = s1 < s2... < sm = n. We
similarly call the line psipsi+1

linking two neighbouring
points in the simplified trajectory as a simplified segment.
The simplified trajectory T ′ indicates that the object moves
along a simplified segment psjpsj+1

(1 ≤ j ≤ m − 1),
which approximates the movement along a sequence of seg-
ments psjpsj+1, psj+1psj+2, ..., psj+1−1psj+1

as indicated by
the original trajectory T . Thus, we call the simplified seg-
ment psjpsj+1 an anchor segment for each of the points
psj , psj+1, .., psj+1−1.

To measure the information loss of the simplification,
several error measures have been proposed, including Syn-
chronized Euclidean Distance (SED) [12], [13], [14], [21],
Perpendicular Euclidean Distance (PED) [21], [20], [34], [35],
Direction-aware Distance (DAD) [36], [37], [10], [23], and
Speed-aware Distance (SAD) [14]. These measures are defined
in two steps. First, the error of a simplified segment psjpsj+1

(denoted by ϵ(psjpsj+1
)) is defined as the maximum error

of an original point pi that takes the segment as its anchor
segment (denoted by ϵ(psjpsj+1

|pi)):

ϵ(psjpsj+1
) = max

sj≤i<sj+1

ϵ(psjpsj+1
|pi), (1)

where ϵ(psjpsj+1
|pi) can be instantiated with SED,

PED, DAD, or SAD. Figure 1 illustrates ϵSED(p1p3|p2),
ϵPED(p1p3|p2), and ϵDAD(p1p3|p2). Detailed definitions can
be found in an evaluation paper [6]. Second, the error of the
simplified trajectory T ′ (denoted by ϵ(T ′)) is defined as the
maximum error of its simplified segments:

ϵ(T ′) = max
1≤j≤m−1

ϵ(psjpsj+1
) (2)

Error-Driven Trajectory Simplification (EDTS). In the
EDTS problem [8], [9], [11], [10], given a trajectory T =
⟨p1, p2, ..., pn⟩ and a storage budget W , it aims to find a sim-
plified trajectory T ′ = ⟨ps1 , ps2 , ..., psm⟩ such that |T ′| ≤ W
and ϵ(T ′) is minimized, where ϵ(T ′) is SED, PED, DAD, or
SAD.

Fig. 1: Error measurements.

B. Problem Definition

We define a new problem, called Query Accuracy Driven
Trajectory Simplification (QDTS), which aims to simplify a
trajectory database D to be within a storage budget such that
its simplified database D′ preserves the accuracy of query
processing for multiple types of trajectory queries as much
as possible when compared to the that on D.

Problem 1 (QDTS): Given a trajectory database D and a
storage budget W indicating a fraction r of the original points
in D that can be retained, Query-Driven Trajectory Simpli-
fication aims to find a trajectory database D′ of simplified
trajectories, such that the difference between query results on
D and D′ is minimized.

The QDTS problem relies on (1) a query type on a trajectory
database and (2) a quality measure that captures the difference
between the query results on the simplified database and those
on the original database. To establish the former, we review
the literature, including the evaluation papers on trajectory
simplification [6], [7], [5] and a recent trajectory survey [38],
and identify four widely-used queries, namely Range Query,
kNN Query, Similarity Query, and Clustering. For the latter,
we define query-based quality measures by following [6].
Range Query [39]. Given a trajectory
database D, a range query with parameters
(qxmin

, qxmax
, qymin

, qymax
, qtmin

, qtmax
) finds all trajectories

that contain at least one point pi = (xi, yi, ti) such
that qxmin

≤ xi ≤ qxmax
, qymin

≤ yi ≤ qymax
, and

qtmin ≤ ti ≤ qtmax .

kNN Query [40]. Given a trajectory database D, a kNN query
takes a query trajectory Tq and a time window [ts, te] as
parameters and returns a set of k trajectories (denoted by R)
such that ∀Ti ∈ R,∀Tj ∈ D − R, Θ(Tq[ts, te], Ti[ts, te]) ≤
Θ(Tq[ts, te], Tj [ts, te]), where Θ(·, ·) represents a dissimilarity
measure for trajectories. In this paper, we consider EDR [41]
and t2vec [42] to instantiate Θ(·, ·), as these represent non-
learning and learning based trajectory similarity measures [38],
[6], respectively. Note that our solution is orthogonal to the
dissimilarity measure used.

Similarity Query [43]. Given a trajectory database D, a
similarity query takes a trajectory Tq and a time window [ts, te]
as inputs and returns a set of trajectories (denoted as R), such
that d(Tq[i], Tj [i]) ≤ δ for any ts ≤ i ≤ te, where Tj ∈ R,
d(Tq[i], Tj [i]) is the Euclidean distance between two points
Tq[i] and Tj [i] and δ is a given distance threshold.

Trajectory Clustering [44]. Given a trajectory database, tra-
jectory clustering partitions each trajectory into subtrajectories
and then clusters subtrajectories based on some notion of
distance among trajectories.



Quality Measures. We use the F1-score for measuring the
difference between query results on an original database D
and those on a simplified database D′. The idea is to use
the results on D as the ground truth and then measure the
quality of the results on D′ using the F1-score. The smaller
the difference between the query results is, the larger the F1-
score.

For range, similarity, and kNN queries, we denote by Ro

and Rs the trajectory sets returned on D and D′, respectively.
We define precision (P), recall (R), and F1-score as follows.

P =
|Ro ∩Rs|
|Rs|

R =
|Ro ∩Rs|
|Ro|

F1 = 2 · P · R
P + R

(3)

In particular, for a kNN query, the precision, recall, and F1-
score are equal since |Ro| = |Rs| = k.

For the trajectory clustering query, we define Ro (resp. Rs)
to be the set of pairs of trajectories, which are from the same
cluster in the results on D (resp. D′), and then define the
F1-score as above.
QDTS v.s. Existing Trajectory Simplification Problems.
The QDTS problem differs substantially from the existing
error-driven trajectory simplification problems. First, it aims
to optimize the data usability (i.e., the query accuracy) di-
rectly, as opposed to optimizing an error measure. Second, it
targets a database of trajectories and simplifies the trajectories
collectively, as opposed to separately.
Remarks. We emphasize that we only produce one simplified
database and use the simplified database to support multiple
types of queries including range query, kNN query, similarity
query, clustering, and possibly others.

IV. METHODOLOGY

We propose a new algorithm called RL4QDTS for query
accuracy driven trajectory simplification. It starts with the most
simplified database, in which each simplified trajectory T ′ of
an original trajectory T consists of only the first and last points
of T . It then introduces original points into the simplified
database iteratively until its budget is exhausted. For better
efficiency, it builds an octree on the database of trajectories.
Whenever it needs to choose a point, it first chooses a cube in
the octree and then chooses a point in that cube. The octree
recursively partitions a 2D spatial and 1D temporal space into
8 sub-spaces, which we call (spatial-temporal) cubes. This
is essentially a sequential process of two decision tasks, and
therefore, it adopts reinforcement learning (RL) since RL is
widely known for its power of handling sequential decision
processes. Specifically, RL4QDTS employs an agent (called
Agent-Cube) to traverse the octree to find a cube. Then, it
employs another agent (called Agent-Point) to choose a point
in the chosen cube to be inserted into the simplified database.
The decision making processes by the two agents are modeled
as Markov decision processes (MDP) [16] and the MDPs are
designed so that the agents cooperatively optimize the query
accuracy on the simplified database.

We present the details of the MDPs of Agent-Cube and
Agent-Point in Sections IV-A and IV-B, respectively. We then

describe how the policies for the two MDPs are learned, in
Section IV-C. We finally present the RL4QDTS algorithm that
leverages the two agents for simplifying a trajectory database,
in Section IV-D.

A. Agent-Cube: MDP for Choosing a Cube

Consider the task of choosing a cube. Agent-Cube chooses a
cube by traversing the octree top-down, starting from the root
node. Each time it visits a node, it decides whether to stop.
If it stops, it means that the node’s cube is chosen; otherwise,
it decides which node among the 8 child nodes to visit. We
define the Markov decision process (MDP) of Agent-Cube as
follows.

(1) States. Let sc denote a state of Agent-Cube’s MDP, which
we define as follows. We denote by Bj

i (i > 1, 1 ≤ j ≤ 8) a
cube of the octree, which is at the ith level and corresponds
to the jth child node of its parent node. We designate B1

1 to
denote the cube of the root node. Consider that Agent-Cube is
currently visiting cube Bj

i . For cube Bj
i , we use the number

of trajectories (denoted by MBj
i
) and the number of queries

(denoted by QBj
i
) that fall into it, to capture the distributions of

the data and queries. As queries are not available beforehand,
we synthetically generate a workload of range queries, each
query location is sampled randomly by following a certain
distribution (e.g., data distribution). Formally, the state sc at a
cube Bj

i is defined by its 8 child nodes (B1
i+1, B

2
i+1, ..., B

8
i+1)

with two distribution features (data and query) as follows.

sc = {
MB1

i+1

MBj
i

,
QB1

i+1

QBj
i

, ...,
MB8

i+1

MBj
i

,
QB8

i+1

QBj
i

}, i ≥ 1. (4)

Here, the values of a state are normalized by dividing by the
total numbers of trajectories and queries in cube Bj

i (i.e.,
MBj

i
and QBj

i
) to avoid data scale issues. We explain the

intuition of the state design as follows. The data values in the
states of cubes capture how trajectories are distributed over the
cubes. For example, if a cube has only few trajectories and is
sparse, an agent tends to select this cube to ensure that data
in that cube is not lost. Similarly, query values in the cubes
capture how queries are distributed over the cubes. Intuitively,
an agent tends to select a cube with a larger value since the
data would serve more queries. We note that in cases we have
some knowledge of the query workload for testing (e.g., its
distribution), we can generate query workloads by following
the distribution for training; in cases we have no knowledge
of the query workload for testing, we can generate a query
workload by following the data distribution for training. In our
experiments, we conduct experiments which verify to some
extent the transferability of our method for cases where the
query workload for testing does not follow that of the one
used for training.

(2) Actions. Let ac denote an action of Agent-Cube’s MDP.
With the currently visited cube being Bj

i , we define two
possible types of action: (1) Proceed to visit one of the 8
child nodes, and (2) Stop the traversal and return the current



cube to Agent-Point, to choose a point within the chosen cube.
Formally, ac is defined as follows.

ac = k (1 ≤ k ≤ 9). (5)

Here, ac = 1, 2, ..., 8 means to traverse one of the 8 child
nodes of the current one and ac = 9 means to stop at the
current node. Furthermore, we constrain the action space by
only considering the cubes that involve trajectories. Suppose
we take an action ac = k, which corresponds to one of the two
transition cases. Case 1: it explores the next cube Bk

i+1 if 1 ≤
k ≤ 8, and a new state at cube Bk

i+1 can be computed using
Equation 4. Case 2: it stops and returns to Agent-Point if k =
9. More details of Agent-Point are presented in Section IV-B.
(3) Rewards. When the action is to explore one of the 8 child
nodes, the reward cannot be immediately observed, since no
point has been inserted into the simplified database. When
the action is to choose the current cube for Agent-Point to
choose a point within the cube, the simplified database would
be updated and some reward signal can be acquired (e.g., by
measuring the difference between the query accuracy on the
original database and that on the updated simplified database).
In summary, Agent-Cube would finally choose a cube for
Agent-Point and then acquire a certain reward signal. There-
fore, we make Agent-Cube and Agent-Point share the same
rewards, since they cooperate towards the same objective, i.e.,
learning a query-aware policy such that a simplified database
preserves the query accuracy as much as possible compared
to the original database. In particular, we set the reward of
an action by Agent-Cube to be equal to that of the following
action of choosing a point within the selected cube by Agent-
Point. More details of the reward definition of Agent-Point are
presented in Section IV-B.

B. Agent-Point: MDP for Choosing a Point

We denote the chosen cube by Agent-Cube as B for sim-
plicity. Next, we define the MDP of Agent-Point for choosing
a point within B to introduce to the database.
(1) States. Let sp denote a state of Agent-Point’s MDP, which
we define as follows. Let NB (resp. MB) denote the number
of points (resp. trajectories) in the cube B. To define the state,
one idea is to incorporate all NB points. However, this idea
has two issues. (1) The definition in this way is NB-dependent,
which is not suitable for other cases when the number of points
is not NB . (2) NB is generally very large. With this definition,
the state space would be huge and the model is hard to train.

We design the states such that these two issues are avoided
as follows. First, let pTi

sa and pTi
sb

denote the first point and last
point of a trajectory Ti within the cube, respectively. For each
point pTi

sj in the cube with sa ≤ sj ≤ sb, we define a pair of
two values, denoted by v(pTi

sj ), as follows.

v(pTi
sj ) = (vs(p

Ti
sj ), vt(p

Ti
sj )). (6)

The first value, denoted by vs(p
Ti
sj ), is equal to the “spatial”

distance between pTi
sj and the synchronous point on the seg-

ment linking the points immediately before and after pTi
sj in

the trajectory Ti. The second value, denoted by vt(p
Ti
sj ), is

equal to the “temporal” difference between the time of pTi
sj

and the time of pTi
sj ’s closest point on the segment linking the

points immediately before and after pTi
sj in the trajectory Ti.

The intuition of the two values is to capture the features of
the point pTi

sj from both the spatial and temporal aspects given
the context of trajectory simplification.

Among all points in each trajectory Ti, we then find a point
(denoted as pTi

s∗ ) which has the maximum vs, where s∗ denotes
its index. That is,

s∗ = argmax
sa≤sj≤sb

vs(p
Ti
sj ). (7)

Finally, the state sp of Agent-Point is defined as the set of
K largest vs values of v(pTi

s∗) among the BM trajectories, that
is

sp = {v(pTπ(1)
s∗ ), v(p

Tπ(2)
s∗ ), ..., v(p

Tπ(K)
s∗ )}, (8)

where π denotes the permutation of T1, T2, ..., TMB
such

that vs(p
Tπ(1)
s∗ ), vs(p

Tπ(2)
s∗ ), ..., vs(p

Tπ(MB)

s∗ ) is sorted in a
descending order. K (K ≤ MB) is a hyper-parameter that
can be tuned empirically to control the size of the state space.
Note that if a point has been introduced in the database, the
point will not be used for the state definition.

Here, we refer to an example for illustrating the state
definition. Consider a cube B4

3 (the bottom right node at the
third tree level) in Figure 2. It contains two points p5 and p8
for the definition. For p5 (resp. p8), we calculate the values
as (1.6, 0.5) (resp. (1.3, 0.7)) for capturing the spatial and
temporal distances with respect to its simplified segment p4p6
on T2 (resp. p7p9 on T3). Then, the state is constructed as
sp = {(1.6, 0.5), (1.3, 0.7)} with the setting of K = 2.

Our state design avoids the two aforementioned issues,
where K is generally much smaller than NB or MB . With
this design, a state has a fixed size that is independent from
the number of trajectories in the cube.
(2) Actions. Let ap denote an action of Agent-Point. The
design of actions is consistent with the design of state sp.
Specifically, the actions are defined as follows:

ap = k (1 ≤ k ≤ K), (9)

where action ap = k means to introduce point p
Tπ(k)
s∗ into D′.

(3) Rewards. Since our objective is to obtain a simplified
database that serves queries more effectively (i.e., minimiz-
ing the difference between the query results on the original
database and those on the simplified database), the reward
is expected to reflect the improvement of query performance
as more points are included in the simplified database. To
this end, we use the query workloads that have been used
for defining the states (e.g., we use a set of range queries,
where each query location is randomly sampled by following
the data distribution). One option is to perform the queries
after each point is inserted to the simplified database, which
is associated with the transition from the current state sp to the
next state sp

′
when an action ap is taken. However, it would

be prohibitively costly to perform queries for each inserted



point. In addition, since the simplified database D′ has not
been fully constructed, the query improvement with inserting
just one point is often negligible and it is hard to demonstrate
the quality of the action.

In our design, we choose to perform the queries after ∆
(e.g., ∆ = 50) points are inserted for achieving accumulative
effects. Specifically, we denote the reward by R. At state spi ,
we consider the simplified database (denoted by D′). At state
spi+∆, we consider the simplified database again (denoted by
D′′). We then define the reward R as follows.

R = diff (Q(D), Q(D′))− diff (Q(D), Q(D′′)), (10)

where diff (Q(D), Q(D′)) measures the difference between
the results of queries on the original database D and the
simplified database D′. The intuition is that if the difference
for the simplified database D′′ is smaller, then the reward
is larger. Furthermore, we make the reward R be shared by
all transitions that are involved when traversing from spi to
spi+∆ as well as those of Agent-Cube that are involved in this
process.

With the above reward definition, the objective of the
MDP, i.e., maximizing the accumulative rewards, would be
equivalent to that of the QDTS problem, i.e., minimizing the
difference between queries on the original database and those
on the simplified database. To see this, suppose we traverse
a sequence of N ′ states sp1, s

p
2, ..., s

p
N ′ (for simplicity, we

assume ∆ = 1 for this analysis). Correspondingly, we receive
a sequence of rewards R1, R2, ..., RN ′−1. We assume that the
future rewards are accumulated without discounted rates, and
thus the accumulative reward is calculated as follows.

N ′−1∑
t=1

Rt =

N ′−1∑
t=1

(diff (Q(D), Q(D′
t))− diff (Q(D), Q(D′′

t )))

= diff (Q(D), Q(D′
1))− diff (Q(D), Q(D′′

N ′−1))

= C − diff (Q(D), Q(D′′
N ′−1)),

(11)
where D′

t (resp. D′′
t ) denotes the simplified database at the

state spt before (resp. after) the action apt is performed. We
regard the initial term diff (Q(D), Q(D′

1)) as a constant C and
no points have been inserted at that state. Therefore, the objec-
tive of the MDP is to maximize C − diff (Q(D), Q(D′′

N ′−1))
or equivalently to minimize diff (Q(D), Q(D′′

N ′−1)), which is
exactly the objective of QDTS.

C. Policy Learning via DQN

The core problem of a MDP is to find an optimal policy,
which guides an agent to choose an action at a specific state,
such that the accumulative reward is maximized. Considering
that the states in our MDPs are continuous, we adopt the Deep-
Q-Networks (DQN) [45] for learning a policy from the MDPs
of Agent-Cube and Agent-Point. Specifically, we adopt the
deep Q learning with replay memory [45] for learning the
policy, denoted by πθc(a|sc) for Agent-Cube (resp. πθp(a|sp)
for Agent-Point). The policy samples an action a at a given
state sc (resp. sp) via DQN, whose parameters are denoted by

Algorithm 1: The framework of RL4QDTS algorithm

1 Function RL4QDTS(D = ⟨T1, T2, ..., TM ⟩, W):
2 Build an octree OT for D;
3 for i=1,2,...,M do
4 Insert point pTi

1 and pTi

|Ti| into D′;
5 end
6 for i=2M+1,2M+2,...,W do
7 B ← Agent-Cube(OT );
8 D′ ← Agent-Point(B,D′);
9 end

10 return D′

Algorithm 2: The Agent-Cube

1 Function Agent-Cube(OT):
2 h← 1 and l← 1;
3 while true do
4 Construct a state

sch ← {
M

B1
h+1

M
Bl

h

,
Q

B1
h+1

Q
Bl

h

, ...,
M

B8
h+1

M
Bl

h

,
Q

B8
h+1

Q
Bl

h

};

5 Sample an action ach ∼ πθc(a|sch);
6 if ach = 9 then
7 B ← Bl

h;
8 Break;
9 else

10 h← h+ 1 and l← ach;
11 Continue;
12 end
13 end
14 return B

θc (resp. θp). We note that other RL algorithms such as policy
gradient can also be used for continuous state MDPs.
D. The RL4QDTS Algorithm

Algorithm 1 details the framework of RL4QDTS with the
learned policies of Agent-Cube and Agent-Point for the QDTS
problem. Specifically, RL4QDTS starts by building an octree
for the original trajectory database D (line 2), and then inserts
the first and the last points of each trajectory into a simplified
trajectory database D′ (lines 3 – 5). The remaining budget
W − 2M is utilized in lines 6 – 9. First, it calls Agent-
Cube (to be presented in Algorithm 2) to choose a cube B,
and then the cube is fed into Agent-Point (to be presented
in Algorithm 3) for updating D′. The process continues until
the budget is exhausted. The RL4QDTS algorithm returns D′,
which contains W points (line 10).

Agent-Cube in Algorithm 2 first initializes the indexes h
and l to indicate a cube Bl

h (line 2). To sample a cube, in
lines 3 – 13, it constructs a state sch using Equation 4 (line 4),
and samples an action ach with the learned policy πθc(a|sch),
which takes sch as input (line 5). If the action is ach = 9, it
breaks and returns the current cube denoted by B (lines 6 –
8); otherwise, it updates the indexes by h← h+1 and l← ach,
and explores the next cube Bl

h (lines 9 – 12).
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Fig. 2: A running example of RL4QDTS, where we use a quadtree to simplify demonstration by eliminating the temporal
dimension. Left: Three trajectories T1, T2, and T3 exist in the original database D, along with two range queries Q1 and Q2

from the query workload. Middle: Quadtree nodes are labeled as TR, TL, BL, and BR (Top Right, Top Left, Bottom Left, and
Bottom Right) with different colors representing quadtree levels. Agent-Cube traverses through nodes following yellow lines.
Right: MDPs of Agent-Cube (C) and Agent-Point (P) for inserting point p5 into the simplified database D′.

Algorithm 3: The Agent-Point

1 Function Agent-Point(B,D′):
2 Compute v(p

Tj
s∗ ) (1 ≤ j ≤MB) for Tj ∈ B;

3 Maintains a descending permutation π of the
values with a max-priority queue;

4 Construct a state
sp ← {v(pTπ(1)

s∗ ), v(p
Tπ(2)
s∗ ), ..., v(p

Tπ(K)
s∗ )};

5 Sample an action ap ∼ πθp(a|sp);
6 Insert the point p

Tπ(k)
s∗ into D′ where ap = k

(1 ≤ k ≤ K);
7 return D′

Agent-Point in Algorithm 3 takes a cube B as input and
computes the value of v(p

Tj
s∗ ) for each trajectory Tj using

Equations 6 and 7, where 1 ≤ j ≤ MB (line 2). Then, it
maintains a descending permutation π of the values with a
max-priority queue (line 3). Next, it constructs a state sp using
Equation 8 (line 4), and samples an action with the learned
policy πθp(a|sp), which takes sp as input (line 5). Let ap = k
(1 ≤ k ≤ K) denote the sampled action. It then takes the
action by inserting the point p

Tπ(k)
s∗ into D′ (line 6).

We illustrate the RL4QDTS Algorithm with the running
example in Figure 2. Here, we use a quadtree (instead of an
octree) by ignoring the temporal dimension of trajectory points
for ease of demonstration. The input is a trajectory database
D = ⟨T1, T2, T3⟩ with storage budget W = 7. Suppose the
range query workload involves Q1 and Q2, where we have
Q1(D) = ⟨T2⟩ and Q2(D) = ⟨T2, T3⟩ based on the original
database D. We build a quadtree and record the number of
trajectories (MB) and queries (QB) in the tree nodes. (1)
The algorithm first inserts the first and the last points of each
trajectory into D′, meaning that the remaining budget is one
point (i.e., 7-2*3=1). (2) Then, Agent-Cube starts at the root
node B1

1 and constructs its state by observing the four child
nodes. It takes the action to explore node B2

2 (Top Left in the
figure). (3) Similarly, at B2

2 , it takes the action to explore node
B4

3 (Bottom Right). (4) At B4
3 , Agent-Cube receives the action

of providing B4
3 to Agent-Point. (5) Agent-Point constructs the

TABLE I: Dataset statistics.
Statistics Geolife T-Drive Chengdu OSM

# of trajectories 17,621 10,359 179,756 513,380
Total # of points 24,876,978 17,740,902 32,151,865 2,913,478,785

Ave. # of pts per traj 1,412 1,713 178 5,675
Sampling rate 1s ∼ 5s 177s 2s ∼ 4s 53.5s
Average length 9.96m 623m 25m 180m

state at cube B4
3 and takes the action to insert point p5 into

D′. (6) Finally, the algorithm breaks from the loop and returns
the simplified database D′ since the budget is exhausted. We
observe that D′ outputs the same results (i.e., Q1(D

′) = ⟨T2⟩
and Q2(D

′) = ⟨T2, T3⟩) as when querying D, which means
that the query accuracy is preserved.

In addition, we develop two techniques to enhance the
effectiveness and efficiency of RL4QDTS. First, we constrain
the octree traversal of Agent-Cube by a maximum tree depth
E. If Agent-Cube reaches this level, it returns the currently
visited cube to Agent-Point. The rationale is to prevent a very
long traversal path for Agent-Cube, since in this case, it is
difficult to train a policy to converge - recall that the reward is
computed with delays. The benefits are verified in experiments.
Second, we set a start level S so that the Agent-Cube starts
traversing the octree by randomly sampling a cube following
the query distribution (the one that has been used for defining
states) from the start level S. The number of points in a cube
decreases as the tree level increases. If Agent-Cube stops at
the root level, Agent-Point will operate on all points in the
database. Hyperparameter S can be used to avoid returning
cells with excessive numbers of points.

Time complexity. The time complexity of the RL4QDTS
algorithm is O(N +W (n + logMB)), where N , W , n, and
MB denote the total number of points in the original database,
the storage budget, the maximum number of points in the
input trajectories, and the maximum number of trajectories
in the data cubes. Specifically, it takes O(N) time to build
an octree on the original database with maximum tree depth
E, which is a small constant [46]. The part of processing
of the remaining W − 2M points dominates the complexity,
including (1) choosing a cube by Agent-Cube with cost O(1),
which explores the octree for a bounded number of levels;
(2) computing the values by Agent-Point with cost O(n);



(3) maintaining the min-priority queue with cost O(logMB);
(4) constructing a state, sampling an action, and inserting a
point by Agent-Point with cost O(1) assuming K is a small
constant. We note that the RL4QDTS algorithm has the same
complexity as the error-driven algorithms [8], [9], [11] for
simplifying a set of trajectories. In addition, we note that
simplification is normally performed once offline, after which
the simplified database is used for online querying.
Remarks. We train RL4QDTS with range queries only and
then test it for different types of queries (including range
query, kNN Query, Similarity Query, and Clustering) without
retraining the model. The rationale behind our strategy is that
the range query is a simple yet basic one and by training the
model with range queries, the model would learn to capture
essential spatial and temporal patterns of trajectories when
simplifying them, which would then be useful for other types
of queries. We follow this strategy and verify the transferability
of our model among different types of queries in experiments.

V. EXPERIMENTS

A. Experimental Setup

Dataset. We conduct the experiments on four real-world
trajectory datasets, Geolife 1, T-Drive 2, Chengdu 3 and
OSM 4. Geolife contains trajectories from 182 users during
a period of five years (2007 – 2012), and the trajectory data
is distributed across 30 cities in China, with most trajectories
being from Beijing. T-Drive contains trajectories from 10,357
taxis when driving in Beijing over a period of one week.
Chengdu contains taxi trajectories from 2016-11-01 to 2016-
11-07, released by DiDi Chuxing. OSM is used to test the
scalability, which contains three billion points, released by the
community on OpenStreetMap. The datasets are widely used
in previous trajectory simplification studies [6], [11], [10], and
detailed statistics are shown in Table I.
Baselines. In the literature, no algorithms have been proposed
for the QDTS problem. Given that the EDTS problem takes a
storage budget for a trajectory as input, we consider existing
algorithms that have been proposed for EDTS as baselines
in our experiments. Specifically, we consider four algorithms,
namely Top-Down [8], Bottom-Up [9], RLTS+ [11], and Span-
Search [10]. Among them, Top-Down, Bottom-Up, and RLTS+
are general frameworks that can be applied with different error
measures, while Span-Search works with DAD only. We adapt
Top-Down, Bottom-Up, and RLTS+ in two ways. The first
is to simplify each trajectory in the database one by one by
calling one of the algorithms (this adaptation is denoted as
“E”). The second is to consider the database as a whole and
simplify the database by inserting or dropping points among
all points in the database as it simplifies a trajectory (this

1https://www.microsoft.com/en-us/research/publication/
geolife-gps-trajectory-dataset-user-guide/

2https://www.microsoft.com/en-us/research/publication/
t-drive-trajectory-data-sample/

3https://drive.google.com/file/d/1onzDFpbD9OOfvOK7jHJ6Tpi2V4oKfxXR/
view?usp=sharing

4https://star.cs.ucr.edu/?OSM/GPS\#center=43.6,-56.1\&zoom=2

adaptation is denoted as “W”). In summary, for each of the
algorithms Top-Down, Bottom-Up, and RLTS+, we obtain 8
(= 4 · 2) adaptations as baselines, each corresponding to a
combination of an error measure SED, PED, DAD, or SAD,
and an adaptation method (“E” and “W”). In total, we have
25 baselines including 24 (= 3 · 8) adaptations of Top-Down,
Bottom-Up, and RLTS+ and 1 adaption of Span-Search (we
note that for Span-Search, the “W” adaptation is not possible).

Evaluation Platform. We implement RL4QDTS and the base-
lines in Python 3.6 and Keras 2.2.0. The experiments are
conducted on a 10-cores server with an Intel(R) Core(TM) i9-
9820X CPU @3.30GHz 64.0GB RAM and an Nvidia GeForce
RTX 2080 GPU. The datasets and code are available via the
link5.

Model Training and Parameter Settings. We implement
Agent-Cube with a two-layered feedforward neural network.
The first layer has 25 neurons and uses the tanh activation
function. The second layer has 9 neurons corresponding to the
action space and uses a linear activation function. We set the
hyperparameters S and E to be 9 and 12, respectively, based
on empirical findings. We also implement Agent-Point with a
two-layered feedforward neural network, where the first layer
involves 25 neurons using the tanh activation function. The
second layer involves K neurons corresponding to the action
space and uses a linear activation function, where K is set to
2. We employ batch normalization in the neural networks to
avoid data scale issues.

For training, we randomly sample 6,000 trajectories from
Geolife (resp. 6,000 trajectories from T-Drive, 48,000 trajec-
tories from Chengdu and 6,000 trajectories from OSM), and
the remaining trajectories are used for testing. From the 6,000
(resp. 6,000, 48,000 and 6,000) trajectories, we randomly
prepare 12 databases each with 500 (resp. 500, 4,000 and
500) trajectories. Further, we generate 5 episodes for each
database for training the policy, and the best model is chosen
during the training process. We note that the setting produces
around one million transitions in the training process, which is
sufficient to train a good policy with reasonable training time
based on empirical findings. In addition, we set ∆ = 50,
i.e., for every 50 points that have been inserted, we perform
100 range queries, each with a spatial region of 2km by 2km
and a temporal duration of 7 days, for constructing states
and acquiring rewards. Here, we only use the range query
for training since it is a basic query type involving both the
spatial and temporal dimensions. We vary the distributions
of range queries across three distributions, namely (1) the
data distribution, (2) the Gaussian distribution, and (3) the
real distribution, for training the model. (1) and (2) are for
the Geolife, T-Drive and OSM datasets and are adopted by
following [47], where the parameters are set to be µ = 0.5 and
σ = 0.25 in the Gaussian distribution. (3) is for the Chengdu
dataset, for which queries are generated near the pickup and
dropoff locations that are provided in the dataset, and it may

5https://www.dropbox.com/sh/ui2yegn2wmok8hs/
AAAXRfeKH1R7AHATmMmsW3Cga?dl=0
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Fig. 3: Skyline selection with existing algorithms.

correspond to some real queries in ride-hailing services. The
discount rate is set to 0.99. The RL4QDTS model is trained
via Adam stochastic gradient descent with an initial learning
rate of 0.01. The minimal ϵ is set to 0.1 with decay 0.99 for
ϵ-greedy in DQN, and the size of the replay memory is set to
2000.

For testing, we notice the RL4QDTS involves some ran-
domness of sampling a cube at the start level. Then, for each
result of RL4QDTS, we run the algorithm 50 times and collect
the averages and standard deviations of the query metrics. For
range queries, we set the range query to be a cube with a
spatial region of 2km by 2km and a temporal duration of 7
days. We use 7 days as the window length for both kNN and
similarity queries. For kNN queries, we set k = 3 and use
EDR and t2vec as the similarity measures. For EDR, we use
a threshold of 2km and for t2vec, we adopt the settings as
described in the original paper [42]. For similarity queries,
the distance threshold is set to 5 km. For clustering, we adopt
the TRACLUS algorithm by following the original paper [44].

B. Experimental Results

(1) Effectiveness evaluation (skyline selection of existing
algorithms). Since we have 25 baselines, we select the sky-
lines of the baselines for each query task to achieve more
targeted comparisons. We construct a trajectory database D
containing around 1.5 million points, and the storage budget
for the simplification is set to W = 0.25%·N for Geolife (resp.
W = 2% ·N for Chengdu). In Figure 3, we show the effec-
tiveness of the algorithms for five query tasks: range query,
kNN Query(EDR), kNN Query(t2vec), Similarity Query, and
clustering, with the three query distributions. For each task, we
query 100 times and report the average results of the F1-score
as described in Section III-B. We conclude the selected base-
lines for comparisons as follows. For the data distribution, we
observe that Top-Down(E,PED), Top-Down(W,PED), Bottom-
Up(W,PED), Bottom-Up(E,DAD), and Bottom-Up(E,SED) are
on the skyline. For the Gaussian distribution, we observe that
Bottom-Up(E,SED), RLTS+(E,SED), Bottom-Up(E,PED), and
Top-Down(E,PED) are on the skyline. For the real distribution,
we observe that Top-Down(W,PED) and Top-Down(E,SAD)
are on the skyline.

(2) Effectiveness evaluation (comparison with skyline).
We compare RL4QDTS with the selected skyline methods

TABLE II: Ablation study for RL4QDTS (Geolife).
Effectiveness Range Query Time (s)
RL4QDTS 0.733± 0.018 61.11

w/o Agent-Cube 0.673± 0.023 50.32
w/o Agent-Point 0.716± 0.021 59.31

w/o Agent-Cube and Agent-Point 0.641± 0.023 48.18

for each query task. We vary the storage budget W from
0.25% · N to 2% · N for Geolife and T-Drive, and 2% · N
to 20% ·N for Chengdu. Here, a compression ratio of 0.25%
means that we reduce the data by a factor of 400 (=100/0.25).
That is, the lower the compression ratio is, the more the
data is reduced. With the current settings of the compression
ratio, (1) the data reduction rate is some 50-400 times for
Geolife and T-Drive and 5-50 times for Chengdu, which looks
reasonable in practice, and (2) the accuracy of the query
processing is also acceptable (e.g., the F1 score is at least
60% in many cases as shown later on). We note that the
trajectories in the Chengdu dataset are shorter than those in
other datasets, as shown in Table I, and thus we set the budget
higher for this Chengdu. Figure 4 shows the results on the
two query distributions (i.e., data and Gaussian) on Geolife.
For RL4QDTS, we show its error bars obtained by running
the algorithm 50 times as described in Section V-A. The
results based on T-Drive and Chengdu, shown in Figure 5
and Figure 6, respectively, demonstrate trends similar to those
seen on Geolife. Overall, we observe that RL4QDTS consis-
tently outperforms the existing error-driven methods across the
different storage budgets, different query tasks with different
generation distributions, and real datasets. Consider the re-
sults on Geolife for example. RL4QDTS outperforms the best
skyline(s) by 34.6% (resp. 10.9%, 15.7%, 34.8%, and 39.9%)
for range query (resp. kNN Query(EDR), kNN Query(t2vec),
Similarity Query, and clustering) for the data distribution, and
by 34.9% (resp. 11.6%, 14.5%, 27.6% and 22.8%) for range
query (resp. kNN Query(EDR), kNN Query(t2vec), Similarity
Query and clustering) for the Gaussian distribution. This is
because RL4QDTS takes the query quality as the objective for
trajectory simplification, and learns a query accuracy aware
policy for the simplification to preserve the query quality
directly; while existing methods aim to minimize a given error
measure, and query quality is no considered directly.

(3) Effectiveness evaluation (ablation study). We conduct
an ablation study to investigate the effects of Agent-Cube and
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Fig. 4: Comparison with skylines on Geolife (data distribution (a)-(e) and Gaussian distribution (f)-(j)).
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Fig. 5: Comparison with skylines on T-Drive (data distribution (a)-(e) and Gaussian distribution (f)-(j)).

TABLE III: Impacts of parameter S for RL4QDTS (Geolife), where RQ denotes the Range Query.
Start 7 8 9 10 11
RQ 0.557± 0.018 0.608± 0.019 0.733± 0.018 0.712± 0.021 0.686± 0.017

Time(s) 74.37 63.28 61.11 57.76 51.83

TABLE IV: Impacts of parameter E for RL4QDTS (Geolife).
End 10 11 12 13 14
RQ 0.673± 0.023 0.681± 0.018 0.733± 0.018 0.693± 0.019 0.671± 0.021

Time(s) 50.32 57.76 61.11 62.31 67.42

Agent-Point in RL4QDTS. (1) We drop Agent-Cube by setting
the start level S = 9 and the end level E = 10, so that Agent-
Cube reduces to randomly sampling a cube according to the
data distribution and then returning the cube to Agent-Point.
(2) We drop Agent-Point and instead insert the point with the
maximum value into a simplified database. (3) We drop both
Agent-Cube and Agent-Point with the strategies described
above. Table II reports the average results of 100 range queries
with a distribution that follows the data distribution on a
randomly sampled trajectory database with around 1.5 million

points from Geolife. Overall, all components contribute to the
result. Specifically, we observe that Agent-Cube improves the
effectiveness by 6.1% and Agent-Point improves the effec-
tiveness by 2.4%. As expected, the two agents cooperate to
optimize query quality. In addition, we notice that without
Agent-Cube, Agent-Point, or both, the efficiency improves
since the agents employ learning models (i.e., deep neural
networks) to make decisions. Without them, simple operations
are used for the same tasks.

(4) Effectiveness evaluation (deformation study). We inves-
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Fig. 6: Comparison with skylines on Chengdu (real distribution (a)-(e)).
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Fig. 7: Deformation study (SED errors of trajectories returned
by queries)

tigate the deformation of the trajectories returned by queries.
In Figure 7, we run 100 range queries with the data and
Gaussian distributions, and report the average SED of the
returned trajectories, which measures the deformation in terms
of the synchronized Euclidean distances (SED) between the
original trajectories and their simplified ones. As expected, the
deformation of RL4QDTS is consistently lower than skyline
methods. This is because RL4QDTS is a query-aware solution,
which preserves more points for those trajectories to answer
the queries. For the skyline methods, they fail to preserve
the trajectories returned by queries, though the distances (e.g.,
SED) can be optimized explicitly for all trajectories including
both the returned ones and others.

(5) Parameter study (varying parameter S in Agent-Cube).
We evaluate the effect of the start level S in Agent-Cube.
We report the average F1-score of 100 range queries that
follows the data distribution on a database with around 1.5
million points, and we report the running time. Here, we fix
the end level E = 12 and vary the start level S from 7
to 11. In Table III, we observe that the efficiency improves
as S increases. This is because the efficiency of RL4QDTS
depends on the number of points in a sampled cube. A larger
start level S corresponds to a smaller cube containing fewer
candidate points, making the model run more efficiently to
select a point. In contrast, a larger cube (corresponding to
a smaller start level S) contains more candidates, e.g., in
the extreme case of setting S = 1, the Agent-Cube may
select a point from the whole database, resulting in scalability
issue. In addition, we observe that a moderate setting (i.e.,
S = 9) brings the best effectiveness. The reason is that a
smaller cube would make the model miss potential points to be
introduced. Further, while a larger cube would contain many

candidates of points, the sampled cube may not capture the
query distribution accurately, e.g., in the extreme case that a
cube covers the whole database, it does not reflect how queries
are distributed at a finer granularity.
(6) Parameter study (varying parameter E in Agent-Cube).
We study the effect of end level E and fix the start level
S = 9. We consider the effectiveness by running 100 range
queries with the data distribution on a database with around 1.5
million points. We report the average F1-score and the running
time in Table IV. We observe that the effectiveness improves
as the end level E increases and then degrades as E increases
further. This is because parameter E controls the maximum
depth of the octree traversal. When E is small, Agent-Cube
has a very limited search space, and the selected cubes may
not be of good quality. When E is large, it is more difficult to
train the RL policy to converge. In addition, the model runs
fast with a smaller E, since it makes the model stops earlier.
We choose E = 12 as it brings the best usability and runs
comparably fast.
(7) Parameter study (varying parameter K in Agent-
Point). We study the effect of parameter K, which controls
the state space of Agent-Point for decision-making. We con-
struct a database with around 1.5 million points randomly
sampled from Geolife, and report the average results of 100
range queries with the data distribution and the corresponding
running time. In Table V, we observe that the setting of K = 2
gives the best effectiveness, and runs reasonably fast. When
K = 1, it reduces to greedily choose the point with the
maximum value within a cube. When K becomes larger, the
model performance degrades, since it becomes more difficult
to train the model to choose a point among a larger number
of candidate points. In addition, the time cost increases as K
increases because more time is spent on constructing states.
We set K to 2 by default, since this provides a reasonable
trade-off between effectiveness and efficiency.
(8) Parameter study (varying parameter k in kNN query).
We study the effect of different k in kNN queries with EDR
and t2vec on Geolife. In Table VI, we vary the k from 1 to
5, and report the effectiveness by running 100 kNN queries
with the data distribution. We observe that the effectiveness
improves as k increases, because it overlaps more similar
trajectories with a larger k in the returned queries. In addition,
the results on EDR and t2vec show similar trends.
(9) Scalability test (varying the data size N ). We study
scalability when varying the database size on OSM. We



TABLE V: Impacts of parameter K for RL4QDTS (Geolife).
K 1 2 3 4 5
RQ 0.716± 0.021 0.733± 0.018 0.724± 0.021 0.723± 0.023 0.706± 0.023

Time(s) 59.31 61.11 62.43 63.85 64.35

TABLE VI: Impacts of k in kNN query for RL4QDTS (Geolife).
kNN 1 2 3 4 5
EDR 0.281± 0.013 0.472± 0.011 0.594± 0.013 0.641± 0.015 0.669± 0.015
t2vec 0.372± 0.016 0.525± 0.016 0.611± 0.015 0.661± 0.013 0.686± 0.015
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Fig. 8: Efficiency evaluation (OSM)

compare all skyline methods as shown in Figure 3, and vary
the trajectory database size N from 0.2 billion to 1 billion
points, with a fixed storage budget W = 0.25% · N . The
running times (the maximum is set to 100 hours) are shown
in Figure 8(a). Overall, we observe that RL4QDTS runs faster
than many of the existing methods. It is only slower than
the methods adapted from Top-Down because these methods
are based on the idea of iteratively introducing points from
the original single trajectory or whole database according
to some simple criterion that can be computed efficiently.
In contrast, RL4QDTS employs a learned policy for that
task to improve effectiveness, and this incurs time costs for
constructing states and sampling actions of the two agents.
Besides, we notice that the algorithms adapted with the “W”
option are generally slower than the algorithms adapted with
the “E” option. For example, Bottom-Up(E,PED) is faster
than Bottom-Up(W,PED) by around 40%, since the Bottom-
Up(W,PED) operates on all points in the database, which
generally is more expensive. The results are qualitatively
similar on other datasets and omitted.

(10) Efficiency evaluation (varying the budget size W ). We
further study the effect of budget size W from 0.25% · N
to 2% · N , with a fixed N of 0.1 billion points. Figure 8(b)
illustrates the running time on Geolife. RL4QDTS is slower
than the Top-Down adaptions, but is faster than the Bottom-
Up adaptions by at least a factor of two times. As W increases,
RL4QDTS becomes faster than Top-Down adaptions, because
it computes the values based on a partial trajectory within a
cube by Agent-Point; however, Top-Down adaptions computes
that values based on a whole trajectory. In addition, the
running times of the Top-Down adaptions increase, while those
of the Bottom-Up adaptions decrease slightly as W increases,
which may be explained by their strategies for conducting
simplification (i.e., inserting vs dropping points), and this is
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consistent with their time complexities. Again, algorithms with
the “W” is slower than that with the “E”. The results are
qualitatively similar on other datasets and omitted.
(11) Training time. In Table VII, we show the training time
of RL4QDTS on Geolife with the default settings described
in Section V-A. We randomly construct 5 training sets with
3,000 to 7,000 trajectories. For each training set, we report
the time cost (hours) and effectiveness based on the selected
best model during the training. We observe that the training
generally takes several minutes and that the cost increases al-
most linearly with the number of trajectories. The effectiveness
improves slightly when the number of trajectories exceeds
6,000. We use the setting of 6,000 trajectories to train the
RL4QDTS model, which is enough to obtain a good model
with a reasonable training cost. We further study the impacts
of ∆ in Table VIII. We observe that the training time decreases
as ∆ increases, because it performs fewer queries for obtaining
rewards. Besides, a moderate ∆ is with the best effectiveness.
This is because with a smaller ∆, it is hard to demonstrate
the quality of actions, and with a larger ∆, it causes a long
delayed reward during the training.
(12) Transferability test (with distribution changes). We
consider two scenarios to test RL4QDTS transferability. First,



TABLE VII: Training cost (Geolife).
Size 3,000 4,000 5,000 6,000 7,000
RQ 0.703± 0.017 0.714± 0.015 0.724± 0.021 0.733± 0.018 0.733± 0.018

Time(h) 0.67 0.88 1.15 1.36 1.55

TABLE VIII: Impacts of ∆ for training (Geolife).
∆ 20 30 40 50 60

RQ 0.681± 0.017 0.686± 0.016 0.701± 0.015 0.733± 0.018 0.685± 0.018
Time(h) 2.35 1.91 1.44 1.36 1.34

we train RL4QDTS based on a query workload of range
queries following the Gaussian distribution with µ = 0.5
and σ = 0.25 on Geolife, and test its effectiveness for
range queries which follow the Gaussian distributions with
different µ (from 0.5 to 0.9), and σ (from 0.25 to 0.85). The
results are shown in Figure 9(a) and (b). This is for testing
the transferability for moderate changes in query distribution.
Second, we use the same model that has been trained based
on the Gaussian distribution and test its effectiveness for
range queries which follow a Zipf distribution with different
exponent parameters a (from 4 to 8). The a controls the
density of the queries. We empirically set a starting from 4,
since it will produce many duplicated queries that are closely
together when a is further smaller. The results are shown in
Figure 9(c). This is for testing the transferability for significant
changes in query distribution. We also report the results of
the best baseline Bottom-Up(E,SED). In Figure 9(a) and (b),
we observe that as the change becomes more significant,
RL4QDTS has its performance degrades slightly yet it still
consistently outperforms the baseline across all settings of µ
and σ. In Figure 9(c), we observe that RL4QDTS performs
comparably well with the baseline in most cases and better
sometimes though the query workload distribution has changed
drastically, which shows the robustness of our method. This
may be explained by that RL4QDTS does not rely on any error
measures and preserves patterns and knowledge embedded in
the data via neural networks, which remain useful to optimize
queries even if the distributions are changed. We further
visualize the distribution changes in Figure 9(d)-(g).

VI. CONCLUSION

We introduce the query accuracy-driven trajectory simplifi-
cation problem, aiming to minimize the difference between
query results on the original database and on a simplified
one. Our novel solution, RL4QDTS, employs multi-agent
reinforcement learning, enabling collective trajectory simplifi-
cation while directly optimizing the QDTS problem’s objec-
tive. Extensive experiments on real-world trajectory datasets
demonstrate that RL4QDTS consistently outperforms existing
EDTS algorithms in five query processing operations. One
promising research direction is to explore data-driven ap-
proaches for compressing road network-based trajectories to
enhance effectiveness and efficiency.
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