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Learned indexes have been proposed to replace classic index structures like B-Tree with machine learning (ML)
models. They require to replace both the indexes and query processing algorithms currently deployed by the
databases, and such a radical departure is likely to encounter challenges and obstacles. In contrast, we propose
a fundamentally different way of using ML techniques to build a better R-Tree without the need to change the
structure or query processing algorithms of traditional R-Tree. Specifically, we develop reinforcement learning
(RL) based models to decide how to choose a subtree for insertion and how to split a node when building and
updating an R-Tree, instead of relying on hand-crafted heuristic rules currently used by the R-Tree and its
variants. Experiments on real and synthetic datasets with up to more than 100 million spatial objects show
that our RL based index outperforms the R-Tree and its variants in terms of query processing time.
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1 INTRODUCTION
To support efficient processing of spatial queries, such as range queries, KNN queries and spatial
join queries, spatial databases have relied on indexes. The R-Tree [14] is arguably the most popular
spatial index that prunes irrelevant data for query processing and is currently deployed by a
number of databases such as PostgreSQL. R-Trees have attracted extensive research interests
[1–3, 5, 7, 12, 18, 19, 23, 24, 27, 30, 32–34, 36, 38, 40, 43].

The learned index has been proposed in [22], which proposes a recursive model index (RMI) for
indexing 1-dimensional data by learning a cumulative distribution function (CDF) to map a search
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key to a rank in a list of ordered data objects. The idea of learned indexes is also extended for spatial
data [24, 29, 32, 40] and multi-dimensional data [5, 7, 27]. They usually map spatial data points
in a dataset to a uniform rank space (e.g., using a space filling curve), and then learn the CDF for
this dataset. Despite the success of these learned indexes in improving the efficiency of processing
some types of queries, they still have various limitations. (1) To the best of our knowledge, existing
learned indexes [5, 7, 24, 27, 32, 40] can only handle point objects, but not other types of spatial
objects. (2) Some of them [5, 7, 27] do not consider KNN queries or spatial join queries, which
are important spatial queries, while some others [32, 40] do not return accurate query results.
(3) Some learning based spatial data indexes [7, 27] do not consider updates while some others
[24, 32] need to frequently retrain their models. Furthermore, they need to replace both the index
structures and query processing algorithms currently used by the spatial database systems, and
such a radical departure, together with these limitations, would make it difficult for them to be
deployed in current database systems. Section 5 covers more discussions on them.

In this work, rather than learning a CDF for spatial data, we consider a fundamentally different
approach, i.e., to use machine learning (ML) techniques to construct a better R-Tree in a data-driven
way for better query efficiency in a dynamic environment where updates occur frequently and
bulk loading is not viable. Specifically, we propose to build ML models for the two key operations
of building and updating an R-Tree, i.e., ChooseSubtree and Split, which currently rely on hand-
crafted heuristic rules. Our proposed method has several salient features. (1) The learning based
index can handle any spatial object, such as rectangular objects. (2) The R-Tree structure is not
modified and thus all the currently deployed query processing algorithms will remain applicable.
This would make it easier for the learning based index to be deployed by current databases. (3) The
learning based index returns accurate query results. (4) The learning based index is designed for
dynamic environments and can readily handle updates.
To motivate our idea, we next revisit ChooseSubtree and Split. When inserting a new spatial

object, the ChooseSubtree operation is invoked iteratively, i.e., choosing which child node to insert
the new data object, until a leaf node is reached. If the number of entries in a node exceeds the
capacity, the Split operation is invoked to divide the entries into two groups. Many R-Tree variants
have been proposed, which mainly differ in their ChooseSubtree and Split algorithms. Almost all
these strategies are based on hand-crafted heuristics. For example, in R-Tree [14], ChooseSubtree
utilizes the heuristic rule of inserting a new data object into a tree node whose minimum bounding
rectangle (MBR) needs the least area enlargement while R*-Tree [2] adopts a more complicated
heuristic rule by taking into account both area enlargement and overlap increment. However, no
single heuristic strategy dominates the others in terms of query performance. We would like to use
Split as an example to illustrate this. We generate a dataset with 1 million uniformly distributed
data points and construct four R-Tree variants using four different Split strategies, namely linear
[14], quadratic [14], Greene’s [13] and R*-Tree [2]. We run 1,000 random range queries and rank
the four indexes based on the query processing time of each individual query. We observe that no
single index has the best performance for all the queries. For example, Greene’s Split has the best
query performance among 50% of the queries while R*-Tree Split is the best for 49% of the queries.

This observation motivates us to handle the ChooseSubtree and Split operations by replacing or
enhancing their heuristic strategies with machine learning models. Furthermore, we observe that
the two operations are invoked in a sequential process when inserting a data object, so we model
them as two Markov decision processes (MDPs) [31] and propose to use reinforcement learning
(RL) to learn models for the two operations.
Challenges and Proposed Solutions.While this idea seems interesting, a few challenges have to
be overcome to make it work.
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The first challenge is how to formulate ChooseSubtree and Split as MDPs each of which consists
of states, actions and reward signals. Specifically, (1) Designing the action space. A straightfor-
ward idea could be to define the action space as a set of existing heuristic strategies. However,
this idea did not work, as our experiments showed that different actions often lead to the same
ChooseSubtree/Split decision, leaving us very little room for improvement. Our solution is to
use the top k decision candidates to form the action space which excludes candidates that cause
significant area increase for ChooseSubtree and candidates that have large total areas for Split. As
bad actions are filtered out, exploration in the learning process gets more efficient. (2) Designing
the state. A straightforward idea is to use the extreme values of the bounding box of the current
node as the state metrics. However, our preliminary experiments showed that this state design
did not work well. Due to space constraint, we do not report the details of the experiments. One
possible reason is that this spatial information does not allow the agent to learn the impact of each
action. As a result, the agent is unable to learn to pick the favourable action. In our solution, we
let the state directly reflect the impact of each decision candidate if it is chosen. Using RL Split as
an example, the area and the perimeter of each of the two nodes resulted from each Split decision
candidate form the state. Such a state design allows the RL agents to know the impact of each
action and enables them to learn a good policy. (3) Designing the reward signal. It is nontrivial to
design a good reward function to train the RL agents to take “good” actions. In order for the agents
to learn to distinguish between “good” and “bad” actions, as a learning based index is built during
the training process, we run random queries periodically and let the reward function reflect the
difference in query performance between the learning based tree and an R-Tree which is used as a
reference of comparison.
The second challenge is how to learn policies for the defined MDPs. Specifically, (1) In the

construction of an R-Tree, node overflow (and thus the Split operation) does not occur frequently.
Therefore, only a few state transitions for Split are generated, making model training inefficient.
To address this issue, we first build a tree, the nodes of which are mostly full before RL Split
training starts. It allows node overflow to occur frequently which then improves the training
efficiency. (2) A previous decision (ChooseSubtree or Split) may affect the tree structure in the
future. Therefore, a “good” action may receive a bad reward due to past bad actions. To address
this problem, during model training, we always synchronize the tree that is used as the reference
to the learning based tree after each reward computation. This approach enables impacts from past
actions to be minimized and allows fair evaluation of actions.
Contributions. In summary, we make the following contributions:

(1)We propose to trainmachine learning (ML)models to replace heuristic rules in the construction
and update of R-Tree to improve on its query efficiency in a dynamic environment where updates
occur frequently and bulk loading is not viable. To the best of our knowledge, this is the first work
that uses ML to build a better R-Tree without modifying its structure; Therefore, all currently
deployed query processing algorithms are still applicable and the proposed index can be easily
deployed by current databases.
(2) We model the ChooseSubtree and the Split operations as two MDPs, and carefully design

their states, actions and reward signals. To shed light on the rationales behind our models, we
present not only the final designs but also some unsuccessful trials of designing.
(3) We design an effective and efficient learning process that learns good policies to solve the

MDPs. The learning process enables us to apply our RL models trained with a small dataset to build
an R-Tree for up to more than 100 million spatial objects.
(4) Extensive experiments on both real and synthetic datasets show: (a) RLR-Tree achieves up

to 95% better query performance for range queries, 74% for KNN queries and 70% for spatial join
queries than R-Tree and its variants, and up to 53.8% better query performance for range queries,
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44.8% for KNN queries and 57.1% for spatial join queries than LISA [24], which is the only disk
based learned spatial index that returns exact results for range and KNN queries. (b) The RLR-Tree
outperforms R*-Tree and RR*-Tree by up to 89.3% and 79.2% respectively, when handling updates
of up to 100 million new data objects of the same distribution. It is remarkable that the RLR-Tree’s
performance gets better as more data objects are inserted. Furthermore, the RLR-Tree consistently
outperforms R*-Tree and RR*-Tree significantly even when handling new data with changes in
distribution. Additionally, when we use the RLR-Tree model trained on one real-life dataset to
build an RLR-Tree on another real-life dataset, the performance of the RLR-Tree only drops slightly
compared with the RLR-Tree trained and used on the same dataset. (c) RLR-Tree scales well with
dimensions and its advantage becomes more significant as the number of data dimensions increases.

2 PRELIMINARY AND PROBLEM
2.1 Preliminary
R-Tree [14] is a balanced tree for indexing multi-dimensional objects, such as coordinates and
rectangles and is widely deployed in databases such as PostgreSQL. Each tree node can contain at
most𝑀 entries. Each node (except the root node) must also contain at least𝑚 entries. Each entry
in a non-leaf node consists of a reference to a child node and the minimum bounding rectangle
(MBR) of all entries within this child node. Each leaf node contains entries, each of which consists
of a reference to an object and the MBR of that object. Therefore, a query that does not intersect
with the MBR cannot intersect any of the contained objects.

The algorithms for building and updating an R-Tree comprise two key operations, ChooseSub-
tree and Split. To insert an object into an R-Tree, starting from the root node, ChooseSubtree is
iteratively invoked to decide in which subtree to insert the object, until a leaf node is reached. The
object is inserted into the leaf node and its corresponding MBR is updated. If the number of entries
in a leaf node exceeds𝑀 , the Split operation is invoked to divide the objects into two groups: one
remains in the original leaf node and the other will become a new leaf node. The Split operation
may be propagated upwards as an entry referring to the new leaf node is added to its parent node,
which may overflow and need to be split.

The query performance of an R-Tree highly depends on how the R-Tree is built and updated and
many different R-Tree variants have been proposed. Section 5 covers more discussions on them.

2.2 Problem Statement
As discussed in Section 1, R-Tree variants mostly adopt hand-crafted ChooseSubtree and Split
strategies, and no strategy can build and update an R-Tree with dominant query performance in all
cases. Motivated by this, we aim to learn to build and update an R-Tree, i.e., using RL models to
make decisions for ChooseSubtree and Split. The new index is called RLR-Tree.

3 RLR-TREE
3.1 Overview
The process of inserting a new object into an R-Tree is essentially a combination of two typical
sequential decision making processes. In particular, starting from the root, it needs to make a
decision on which child node to insert the new object at each level in a top-down traversal
(ChooseSubtree). It also needs to make a decision on how to split an overflowing node and divide
the entries in a bottom-up traversal (Split). Reinforcement learning (RL) has been proven to be
effective in solving sequential decision making problems. Therefore, we propose to model the
insertion of a new object as a combination of two Markov decision processes (MDPs) and adopt
RL to learn the optimal policies for ChooseSubtree and Split operations. Since databases such as
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Fig. 1. RLR-Tree Overview

PostgreSQL currently use the R-Tree [14] to index spatial data, our proposed method is readily
applicable in these implementations.

Figure 1 depicts an overview of the proposed solution to build and update an RLR-Tree, as well
as using the RLR-Tree to answer queries. In offline training, we propose new solutions to train
RL ChooseSubtree and RL Split models using a small dataset. This is the focus of this work. The
trained model can be integrated into the algorithms for R-Tree construction to build the RLR-Tree
and can also be used by an existing R-Tree to handle dynamic updates. Finally, any existing query
processing algorithm designed for the R-Tree family can be used for RLR-Tree to answer different
spatial queries.
Next, we focus on the offline training and present our designs for the two MDPs. We present

RL ChooseSubtree and its model training in Section 3.2, and RL Split and its model training in
Section 3.3. We present how to train the two models together in Section 3.4. We briefly introduce
how to integrate the trained models into existing algorithms to construct the RLR-Tree and then to
handle updates in Section 3.5.

3.2 ChooseSubtree
To insert a new object into the R-Tree, we need to conduct a top-down traversal starting from
the root. In each node, we need to decide which child node to insert the new object. To choose
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a subtree with RL, we formulate this problem as an MDP. We proceed to present how to train a
model to learn a policy for the MDP.

3.2.1 MDP Formulation. An MDP consists of four components, namely states, actions, transitions,
and rewards. We proceed to explain how states and actions are represented in our model, and then
present the reward signal design, which is particularly challenging.
MDP: State Space. A state captures the environment that is taken into account for decision making.
For ChooseSubtree, it is a natural idea that a state is from the tree node whose child nodes are
to be selected for inserting a new object. The challenging question is: what kind of information
should we extract from the tree node to represent the state?
Intuitively, as we need to decide which child node to insert the new object, it is necessary to

incorporate the change of the child node if we add the new object into it for each child node.
Possible features that capture the change of a child node 𝑁 include: (1) Δ𝐴𝑟𝑒𝑎(𝑁,𝑜), which is the
area increase of the MBR of 𝑁 if we add the new object 𝑜 into 𝑁 ; (2) Δ𝑃𝑒𝑟𝑖 (𝑁,𝑜), which is the
perimeter increase of the MBR of 𝑁 if we add 𝑜 into 𝑁 , and (3) Δ𝑂𝑣𝑙𝑝 (𝑁,𝑜), which is the increase
of the overlap between 𝑁 and other child nodes after 𝑜 is inserted into 𝑁 . Furthermore, it is helpful
to know the occupancy rate of the child node, denoted by 𝑂𝑅(𝑁 ), which is the ratio of the number
of entries to the capacity. A child node with a high occupancy rate is more likely to overflow in the
future. Our feature design is inspired by the classic work on designing R-Tree and its variants, and
we choose features that are likely to have a significant impact on the query performance [2].

As we have presented several features to capture the properties of a tree node, a straightforward
idea is that we compute the aforementioned features for every child node and concatenate them to
represent the state. However, the number of child nodes varies across different nodes, making it
difficult to represent a state with a vector of a fixed length. An idea to address this challenge is to do
padding, i.e., to append zeros to the features of the child nodes to get a 4·𝑀 dimensional vector, as
there are four features and there are at most𝑀 child nodes. However, the padded representations
are likely to have many zeros which will add noises and mislead the model, resulting in poor
performance. This is confirmed by our preliminary experiments.
To address the challenge, we propose to only use a small part of child nodes to define the state.

This is because most of the child nodes are not good candidates for hosting the new object, as
inserting the new object may greatly increase their MBRs. Here we aim to prune unpromising child
nodes from the state space, and our RL agent will not consider them for representing a state. Our
design of state representation is as follows: We first retrieve the top-𝑘 child nodes in ascending
order of area increase. We also consider other alternative criteria including perimeter, overlap and
occupancy rate, and they perform worse than area increase. Then for each retrieved child node, we
compute four features Δ𝐴𝑟𝑒𝑎(𝑁,𝑜), Δ𝑃𝑒𝑟𝑖 (𝑁,𝑜), Δ𝑂𝑣𝑙𝑝 (𝑁,𝑜), and 𝑂𝑅(𝑁 ). We concatenate the
features of the 𝑘 child nodes to get a 4·𝑘 dimensional vector to represent a state. 𝑘 is a parameter to
be set empirically. Note that to make the representation of different states comparable, the increases
of area, perimeter and overlap are normalized by the maximum corresponding value among all 𝑘
child nodes.
Remark. It is a natural idea that we can include more features to represent a state. For instance, we
can include global information, such as the tree depth and the size of the tree, and local information,
such as the depth of the tree node, the coordinates of the boundary of the MBR. However, our
experiments show that these features do not improve the performance of our model while making
the model training slower. The four features that we use are sufficient to train our model to make
good subtree choices as shown in our experiments. It would be a useful future direction to design
and evaluate other state features.
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MDP: Action Space. As many R-Tree variants have been proposed with different ChooseSubtree
strategies, such as minimizing the increase of area, perimeter, or overlap. A straightforward idea is
to make the different cost functions from the strategies mentioned above form the action space.
After trying different combinations of these cost functions and different state space designs, this
idea is proven to be ineffective by our experimental results. Table 1 depicts the average relative I/O
cost for processing 1,000 random range queries on three datasets of different distributions, namely
Zipf, Gaussian and Uniform. For each query, the relative I/O cost of an index is computed by the
ratio of the I/O cost for it to answer the query to the I/O cost for an R-Tree to answer the same
query. Smaller relative I/O costs indicate better query performance compared with the R-Tree. We
observe from Table 1 that compared with the R-Tree, an RL model with the cost functions as actions
only achieves an improvement of less than 2% in terms of query processing time. We find from our
experiments that in 90% of the nodes, different cost functions end up with the same subtree choice
which gives us very little room for improvement.

Table 1. Performance of Cost Function Based Action Space.

Relative I/O cost
Zipf Gaussian Uniform

Use cost functions 0.98 0.98 1.00
Our final design 0.20 0.18 0.56

As a result, we propose a new idea of training the RL agent to decide which child node to insert
the new object directly. Based on the idea, one design is to have all child nodes to comprise the
action space. However, this incurs two challenges: (1) the number of child nodes contained by
different nodes is usually different, and (2) the action space is large. Considering all child nodes
as the actions leads to a large action space with many “bad actions”. The bad actions make the
exploration during model training ineffective and inefficient. To address the challenges, we use
the similar idea as we use for designing state space. Recall that in designing the state space, we
propose to retrieve top-𝑘 child nodes in terms of the increase of area to represent a state. To make
the action space and the state representation consistent, we define the action space A = {1, . . . , 𝑘},
where action 𝑎 = 𝑖 means the RL agent chooses the 𝑖-th retrieved child node to be inserted with the
new object. The experiment on the impact of the value of 𝑘 on the performance of our proposed
method can be found in Section 4.2.5.
MDP: Transition. In the process of the ChooseSubtree operation, given a state (a node in the
R-Tree) and an action (inserting the new object into a child node), the RL agent transits to the child
node. If the child node is a leaf node, the agent reaches a terminal state.
MDP: Reward Signal. A reward associated with a transition corresponds to some feedback
indicating the quality of the action taken at a given state. A larger reward indicates a better quality.
Since our objective is to learn to build and to update an R-Tree that processes query efficiently, the
reward signal is expected to reflect the improvement of query performance.

In the process of ChooseSubtree, it is challenging to directly evaluate if an action taken at a state
is good, because the new object has not been fully inserted into the tree yet. A straightforward
idea is after the new object has been inserted, we use the R-Tree to process a set of random range
queries. The inverse of the cost (e.g., the number of accessed nodes) for processing the queries is
set as the reward shared by all of the state-action pairs encountered in the insertion of the new
object. The agent seems to be encouraged to take the actions to build a tree that can process range
queries by accessing as few nodes as possible. However, this is not the case due to the following
reasons: (1) A previous action may affect the tree structure and hence the query performance in the
future. Therefore, a “good” action may receive a poor reward due to some bad actions that were
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made previously. (2) More importantly, as we aim to learn to construct an R-Tree that outperforms
the competitors, we are interested in knowing what actions make the resulting tree better than a
competitor and what actions make it worse. The aforementioned reward signal cannot distinguish
the two types of actions, making it ineffective for the agent to learn a good policy to outperform
the competitors. (3) As more objects are inserted into the R-Tree, the average number of accessed
nodes naturally increases. Therefore, the reward signal becomes weaker and weaker, which makes
it difficult for the model to learn useful information in the late stage of the training.
Inspired by the observations, we design a novel reward signal for ChooseSubtree. The high

level idea is that we maintain a reference tree with a fixed ChooseSubtree and Split strategy. The
reference tree serves as a competitor and can be any existing R-Tree variant. The reward signal is
computed based on the gap between costs for processing random queries with the reference tree
and the RLR-Tree. Specifically, the design of the reward signal is as follows:
(1) We maintain an RLR-Tree, that uses RL for ChooseSubtree, and adopts a pre-specified Split

strategy.
(2) We maintain a reference tree which adopts a pre-specified ChooseSubtree strategy and the

same Split strategy as RLR-Tree.
(3) We synchronize the reference tree with the RLR-Tree, so that they have the same tree structure.
(4) Given 𝑝 new objects {𝑜1, . . . , 𝑜𝑝 }, we insert them into both the reference tree and the RLR-

Tree and then generate 𝑝 range queries of predefined sizes whose centers are at the 𝑝 objects,
respectively.

(5) The 𝑝 range queries are processed with both the reference tree and the RLR-Tree. We compute
the normalized node access rate, which is defined as # acc. nodes

Tree height and is the number of accessed nodes
for answering a range query over the tree height. Let 𝑅 and 𝑅′ be the normalized node access rate
of the RLR-Tree and the reference tree, respectively. We compute 𝑟 = 𝑅′ − 𝑅 as the reward signal.
The higher 𝑟 is, the fewer nodes RLR-Tree needs to access to process the range queries than the
reference tree.

(6) All the transitions encountered in the insertion of the 𝑝 objects share the same reward 𝑟 .
With the idea, we are able to distinguish the good actions from the bad actions: A positive

reward means that the RLR-Tree processes the recent 𝑝 insertions well as it requires fewer nodes
accesses to process the queries compared with the reference tree. Moreover, as the reference tree is
periodically synchronized with the RLR-Tree, we can avoid the effect of previous actions. Therefore,
maximizing the accumulated reward is equivalent to encouraging the agent to take the actions
to outperform the reference tree. R-Tree is chosen as the reference because RLR-Tree reduces to
R-Tree when the action space size is set to be 1. It is therefore easy to observe the improvement
our proposed RL method achieves. We also tried R*-Tree as the reference tree and obtained similar
results. Due to space constraint, we do not share the detailed results.

3.2.2 Training the Agent for ChooseSubtree.
Deep-𝑄-Network (DQN) Learning. Deep Q-learning is a commonly used model-free RL method.
It uses a Q-function𝑄∗ (𝑠, 𝑎) to represent the expected accumulated reward that the agent can obtain
if it takes action 𝑎 in state 𝑠 and then follows the optimal policy until it reaches a terminal state.
The optimal policy takes the action with the maximum 𝑄-value in any state. Deep-𝑄-Network [26]
has been proposed to approximate the Q-function 𝑄∗ (𝑠, 𝑎) with a deep neural network 𝑄 (𝑠, 𝑎;Θ)
with parameters Θ. In our model, we adopt the deep Q-learning with experience replay [26] for
learning the 𝑄-functions.

Given a batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′), parameters in𝑄 (𝑠, 𝑎;Θ) is updated with a gradient descent
step by minimizing the mean square error (MSE) loss function, as shown in Equation 1.
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𝐿(𝜃 ) =
∑︁

𝑠,𝑎,𝑟,𝑠′
[(𝑟 + 𝛾𝑚𝑎𝑥𝑎′�̂� (𝑠′, 𝑎′;Θ−) −𝑄 (𝑠, 𝑎;Θ))2], (1)

where 𝛾 is the discount rate, and �̂� (;Θ−) is frozen target network.
Training the Agent. We present the RL ChooseSubtree training process in Algorithm 1. We first
initialize the main network 𝑄 (𝑠, 𝑎;Θ) and the target network �̂� (𝑠, 𝑎;Θ−) with the same random
weights (line 3). In each epoch, it first resets the replay memory (line 5). Then it involves a sequence
of insertions of the objects in the training dataset (lines 6–20). Specifically, for every 𝑝 objects
{𝑜1, . . . , 𝑜𝑝 }, we synchronize the structure of𝑇𝑟 with𝑇𝑟𝑙 (line 7). For each 𝑜𝑖 of the 𝑝 objects, we first
insert it into the reference tree (line 9). Then a top-down traversal on the RLR-Tree is conducted
(lines 10–15). At each level, we compute the state representation (line 12) and use 𝜖-greedy to
choose the action based on their 𝑄-values (line 13), until we reach a terminal state (leaf node).
The transitions are stored in 𝑆𝐴 (line 14). At the leaf node, we insert the new object and use the
same Split strategy as the reference tree in a bottom-up scan to ensure no node overflows (line 15).
Meanwhile, we generate a range query with a predefined size centered at 𝑜𝑖 and add the query to
𝑅𝑄 (line 16). When the 𝑝 objects have been inserted, we compute the reward with the queries in
𝑅𝑄 (line 17). The reward computation process is illustrated in Figure 2. All transitions encountered
in the insertions of the 𝑝 objects share the same reward 𝑟 and are pushed into the replay memory
(line 18). Then we draw a batch of transitions randomly from the replay memory and use the batch
to update the parameters in the main network 𝑄 (;Θ) as DQN does (line 19). The parameters in the
target network �̂� are periodically synchronized with 𝑄 (line 20).
Remark. The new object to be inserted may be fully contained in one of the child nodes. If we
add the new object into such a child node, the MBRs of all child nodes are not affected. When
such cases happen, we do not pass the state representation to the model, but choose the child
node that contains the new object directly. The benefits of using heuristic rules in such “simple
and special” cases are two-fold. Firstly, the RL model can be trained more efficiently as there is no
exploration of potential bad actions. Secondly, model performance becomes better as potential bad
actions are eliminated. Table 2 shows the query performances of the RL ChooseSubtree models
with and without the heuristic rules respectively, on three different datasets, i.e., Zipf, Gaussian
and Uniform. We observed that using heuristic rules in special cases improved the performance
of RL ChooseSubtree by up to 13%. Note that the heuristic rules used in these special cases are
different from the core heuristic rules used in the R-Tree and its variants, such as always inserting
a data object into the node with the least MBR enlargement.

Table 2. Impact of Heuristic Rules on RL ChooseSubtree.

Relative I/O cost
Zipf Gaussian Uniform

Without Heuristic Rules 0.22 0.21 0.62
With Heuristic Rules 0.20 0.18 0.56

3.2.3 Time Complexity. In our analysis, the additional computation cost associated with the use of
neural networks in an RLR-Tree is deemed constant. Assume the RLR-Tree has a size of 𝑆 and a
height of ℎ. Inserting an object into the RLR-Tree encounters ℎ − 1 states. At each state, it takes
𝑂 (𝑘 ·𝑀) time to retrieve the top-𝑘 child nodes and 𝑂 (𝑀) to compute the features for each child
node. Therefore, the overall time complexity is 𝑂 (ℎ·𝑘 ·𝑀). As a comparison, it takes 𝑂 (ℎ·𝑀) time
for ChooseSubtree in the R-Tree.
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Fig. 2. RL ChooseSubtree Reward Computation

Algorithm 1: DQN Learning for ChooseSubtree
1 Input: A training dataset;
2 Output: Learned action-value function 𝑄 (𝑠, 𝑎;Θ);
3 Initialize 𝑄 (𝑠, 𝑎;Θ), �̂� (𝑠, 𝑎;Θ−);
4 for 𝑒𝑝𝑜𝑐ℎ = 1, 2, . . . do
5 Replay memoryM ← ∅;
6 for every 𝑝 objects {𝑜1, . . . , 𝑜𝑝 } in dataset do
7 𝑇𝑟 ← 𝑇𝑟𝑙 , 𝑆𝐴← ∅, 𝑅𝑄 ← ∅;
8 for 𝑜𝑖 ∈ {𝑜1, . . . , 𝑜𝑝 } do
9 Insert 𝑜𝑖 into 𝑇𝑟 ;

10 𝑁 ← the root of 𝑇𝑟𝑙 ;
11 while 𝑁 is non-leaf do
12 𝑠 ← state representation of 𝑁 and 𝑜𝑖 ;
13 𝑎 ← an action selected by 𝜖-greedy based on 𝑄-values;
14 𝑁 ← 𝑎, 𝑆𝐴← 𝑆𝐴 ∪ {(𝑠, 𝑎)};
15 Insert 𝑜𝑖 into 𝑁 , split until no node overflows;
16 𝑅𝑄 ← 𝑅𝑄 ∪ {a range query centered at 𝑜𝑖 };
17 𝑟 ← compute reward with queries in 𝑅𝑄 ;
18 Add (𝑠, 𝑎, 𝑟, 𝑠′) for every (𝑠, 𝑎) ∈ 𝑆𝐴 into memory;
19 Draw samples from memory and update Θ in 𝑄 (;Θ);
20 Periodically synchronize �̂� (;Θ−) with 𝑄 (;Θ);

3.3 Split
The top-down traversal ends up at a leaf node. If the leaf node overflows, it will be split into two
nodes and the Split operation may be propagated upwards. Next, we present how to model Split as
an MDP and how to train the model.

3.3.1 MDP Formulation. We have also explored different ideas to design the state, action, transition
and reward signal of the MDP for Split. Due to space limitation, we only present the final design.
MDP: State Space. For Split, it is natural that a state comes from an overflowing node. A straight-
forward idea is to make the representation of a state capture the goodness of all the possible splits,
so that the agent can decide how to split the node. However, since an overflowing node contains
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𝑀 + 1 entries, there are (2𝑀+1 − 2) possible splits in total. It is impractical to reflect all of these
splits in the state representation.
In order to avoid considering so many possible splits, we adopt a similar idea as R∗-Tree [3]

as follows: We first sort the entries with respect to their projection to each dimension. For each
sorted sequence, we consider the split at the 𝑖-th element (𝑚 ≤ 𝑖 ≤ 𝑀 + 1 −𝑚), where the first 𝑖
entries are assigned to the first group and the remaining𝑀 + 1− 𝑖 entries are assigned to the second
group. This means for each sorted sequence, we only consider𝑀 + 2 − 2 ·𝑚 splits. Next, we further
discard the splits which create two nodes that overlap with each other. We pick the top-𝑘 splits
from the remaining splits in ascending order of total area and construct the representation of the
state. Specifically, for each split, we consider four features: the areas and the perimeters of the two
nodes created by the split. We concatenate the features of all 𝑘 splits and generate a 4𝑘-dimensional
vector to represent the state. The areas and perimeters are normalized by the maximum area and
perimeter among all splits, so that each dimension of the state representation falls in (0, 1].
MDP: Action Space. Similar to ChooseSubtree, in order to make the action space consistent with
the candidate splits that are used to represent the state, we define the action space asA = {1, . . . , 𝑘},
where 𝑘 is the number of splits used to represent the state. An action 𝑎 = 𝑖 means that the 𝑖-th split
is adopted.
MDP: Transitions. In Split, given a state (a node in the R-Tree) and an action (a possible split),
the agent transits to the state that represents the parent of the node. If the node does not overflow,
it is the terminal state.
MDP: Reward Signal. The reward signal for Split is similar to that of ChooseSubtree. We maintain
a reference tree that is periodically synchronized with the RLR-Tree. We use the difference of the
normalized node access rate as the two trees process training queries as the reward signal. Note
that the RLR-Tree adopts the same ChooseSubtree strategy as the reference tree and uses the RL
agent to decide how to split an overflowing node.

3.3.2 Training the Agent for Split. Compared with ChooseSubtree, training the agent for Split is a
more challenging task. To insert an object into the R-Tree, ChooseSubtree is iteratively invoked
at each level in the top-down traversal. On the other hand, Split operation is invoked only when
a node overflows. Therefore, only a few transitions for Split are available for training, making it
difficult for the agent to learn a good policy in reasonable time.

To tackle this challenge, we design a new method for the agent to interact with the environment,
so that Split operation is frequently invoked. Theoretically, if all the nodes are full, the insertion of
a new object definitely causes a tree node to split. Inspired by this, we propose to first build a tree
in which most of the nodes are full, so that node splits can be frequently encountered. We generate
such R-Trees with different sizes, and use the transitions caused by inserting the remaining objects
in the dataset for training.

The procedure is presented in Algorithm 2. In each epoch, we repeat 𝑝𝑎𝑟𝑡𝑠 − 1 iterations to train
the agent (lines 5–24). In particular, in the 𝑖-th iteration, the first 𝑖

𝑝𝑎𝑟𝑡𝑠
of the training dataset forms

the initial part which is used to construct an R-Tree 𝑇𝑏𝑎𝑠𝑒 (line 7). The remaining data are then
divided into two parts, i.e., the fill part containing objects that will not cause node overflow in
𝑇𝑏𝑎𝑠𝑒 and the training part containing objects not in the fill part. Objects in the fill part are inserted
into 𝑇𝑏𝑎𝑠𝑒 while objects in the training part will be used to trigger splits for training later (line
9–10). In this way, most of the nodes in 𝑇𝑏𝑎𝑠𝑒 are likely to be full and the objects in the training
part are likely to cause splits. This pre-training preparation process is illustrated in Figure 3. After
𝑇𝑏𝑎𝑠𝑒 is constructed, we start training with objects in the training part (lines 11–24). For every 𝑝
objects, we first synchronize 𝑇𝑟 and 𝑇𝑟𝑙 with 𝑇𝑏𝑎𝑠𝑒 (line 12). This makes 𝑇𝑟 and 𝑇𝑟𝑙 have the same
structure and are almost full. Then for each of the 𝑝 objects, we insert it into the reference tree
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Algorithm 2: DQN Learning for Split
1 Input: A training dataset;
2 Output: Learned action-value function 𝑄 (𝑠, 𝑎;Θ);
3 Initialize 𝑄 (𝑠, 𝑎;Θ), �̂� (𝑠, 𝑎;Θ−);
4 for 𝑒𝑝𝑜𝑐ℎ = 1, 2, 3, ... do
5 for 𝑗 = 1, 2, 3, ...(𝑝𝑎𝑟𝑡𝑠 − 1) do
6 training part← ∅;
7 Construct 𝑇𝑏𝑎𝑠𝑒 with the first 𝑗

𝑝𝑎𝑟𝑡𝑠 of the objects (initial part);
8 for 𝑜 in the remaining objects do
9 if Inserting 𝑜 into 𝑇𝑏𝑎𝑠𝑒 causes a split then Add 𝑜 to training part;

10 else Add 𝑜 to fill part and insert into 𝑇𝑏𝑎𝑠𝑒 ;
11 for every 𝑝 objects {𝑜1, . . . , 𝑜𝑝 } ⊆ training part do
12 𝑇𝑟𝑙 ← 𝑇𝑏𝑎𝑠𝑒 , 𝑇𝑟 ← 𝑇𝑏𝑎𝑠𝑒 , 𝑆𝐴← ∅, 𝑅𝑄 ← ∅;
13 for 𝑜𝑖 ∈ {𝑜1, . . . , 𝑜𝑝 } do
14 Insert 𝑜𝑖 into 𝑇𝑟 ;
15 Top-down traversal on 𝑇𝑟𝑙 to a leaf node 𝑁 ;
16 if 𝑁 overflows then 𝑅𝑄 ← 𝑅𝑄 ∪ {training query};
17 while 𝑁 overflows do
18 𝑠 ← state representation of 𝑁 ;
19 𝑎 ← an action selected by 𝜖-greedy based 𝑄-values;
20 𝑁 ← 𝑁 ’s parent, 𝑆𝐴← 𝑆𝐴 ∪ {(𝑠, 𝑎)}
21 𝑟 ← compute reward with queries in 𝑅𝑄 ;
22 Add (𝑠, 𝑎, 𝑟, 𝑠′) for all (𝑠, 𝑎) ∈ 𝑆𝐴 to memory;
23 Draw samples from memory and update 𝑄 (;Θ);
24 Periodically synchronize �̂� (;Θ−) with 𝑄 (;Θ);

𝑇𝑟 directly with pre-specified ChooseSubtree and Split strategies (line 14). For the RLR-Tree, we
use the same ChooseSubtree strategy as the reference tree to reach a leaf node 𝑁 (line 15). If 𝑁
overflows, we generate a range query with a predefined size centered at 𝑜𝑖 and add the query to
𝑅𝑄 (line 16). Then we iteratively split 𝑁 and move to its parent until 𝑁 does not overflow (lines
17–20). For each node 𝑁 , we compute the state representation and use 𝜖-greedy to select an action
based on their𝑄-values (lines 18–19). The transitions are stored in 𝑆𝐴 (line 20). When the 𝑝 objects
have been processed, we compute the reward with the queries in 𝑅𝑄 (line 21). The transitions
encountered in processing the 𝑝 objects share the same reward (line 22). Then we draw a batch
of random transitions from the replay memory and use it to update the parameters in the main
network (line 23). The parameters in the target network �̂� (;Θ−) are periodically synchronized
with the main network 𝑄 (;Θ) (line 24).
Remark.When we split a node to two, the ideal case is that the two nodes do not overlap with
each other, so that the number of node accesses for processing a query can be reduced. It is more
challenging when there are many candidate splits that generate two nodes with zero overlap, as
we need to carefully consider how to break the tie. As a result, we consider such a special case in
the exploration of the agent. Specifically, if there exists at most one candidate split that generates
two non-overlapping nodes, we simply select the split with the minimum overlap. We only use RL
to decide how to split the node when more than one split generates non-overlapping nodes. Using
heuristic rules in such “simple and special” cases improved the performance of RL Split by up to
10%. Due to the space constraint, we do not report the details of the experiment.

The training process for Split has two advantages. Firstly, using different fractions of objects
to build an “almost-full” base tree helps to learn a more general model. Secondly, by building
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Fig. 3. RL Split Pre-Training Preparation

the “almost-full” base tree and periodically resetting 𝑇𝑟 and 𝑇𝑟𝑙 to the base tree ensures that the
Split operation is consistently invoked at a high frequency. This makes the training process more
efficient.

3.3.3 Time Complexity. Similar to ChooseSubtree, the additional computation cost associated with
the use of neural networks is deemed constant. If a node overflows, at most 𝑂 (ℎ) Split operations
are invoked. In each Split operation, we first sort the entries along each dimension, which takes
𝑂 (𝑀 log𝑀) time. Then it takes 𝑂 (𝑘 · (𝑀 − 2𝑚)·𝑀) time to retrieve the top 𝑘 splits with minimum
total area. Finally, it takes 𝑂 (𝑘 ·𝑀) time to compute the four features for the 𝑘 splits. Therefore,
the overall time complexity for RLR-Tree Split is 𝑂 (ℎ·𝑘 · (𝑀 − 2𝑚)·𝑀). As a comparison, Split
operation takes 𝑂 (ℎ·𝑀2) time in the classic R-Tree.

3.4 The Combined Model
A straightforward way is to train RL ChooseSubtree and RL Split separately, and then to use the
learned policy to build an RLR-Tree. However, we expect the two agents to be able to help each
other achieve better performance since they have the same goal. Recall that we specially design a
learning process of Split, as node overflow occurs infrequently in the construction of an R-Tree.
Motivated by this, we propose an enhanced training process to train the two agents alternately.
Specifically, in odd epochs, we train the RL agent for ChooseSubtree and the agent for Split is fixed
to be the Split strategy for the RLR-Tree. In even epochs, we train the agent for Split and the agent
for ChooseSubtree is fixed to be the ChooseSubtree strategy for RLR-Tree.

3.5 RLR-Tree Construction & Dynamic Updates
With the learned models for ChooseSubtree and Split, we incorporate the models into the insertion
algorithm of R-Tree to build the RLR-Tree as follows. For each object to be inserted, in the top-
down traversal, we iteratively compute the state representation of a node and use the model
trained for ChooseSubtree to select the subtree corresponding to the action with the maximum
𝑄-value until the object is inserted into a leaf node. When a node overflows, we compute its state
representation and use the model trained for Split to choose the split corresponding to the action
with the maximum𝑄-value. For dynamic updates, new data records can be inserted into an existing
tree using the trained models. Our experimental results (Section 4.2.4) show that the trained models
do not experience significant performance deterioration even when it is not retrained frequently.
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4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We use three synthetic datasets (1-3) used in previous work on spatial indexes [1, 24, 32,
33], and two large real-life datasets (4-5).
(1) Zipf: It consists of small squares of a fixed size. The 𝑥 and 𝑦 coordinates of the squares centers

are randomly generated from a Zipf distribution where the shape parameter is set to be 𝑎 = 4
by default;

(2) Gaussian (GAU): It consists of small squares of a fixed size. The coordinates of the center of
a square are (𝑥,𝑦) where 𝑥 and 𝑦 are randomly generated from a Gaussian distribution with
mean 𝜇 = 0.5 and standard deviation 𝜎 = 0.2;

(3) Uniform (UNI): It consists of small squares of a fixed size. The 𝑥 and 𝑦 coordinates of the centers
of the squares are randomly generated from a uniform distribution in the range [0, 1];

(4) OSM China (CHI): It contains more than 98 million locations in China extracted from Open-
StreetMap;

(5) OSM India (IND): It contains more than 100 million locations in India extracted from Open-
StreetMap.
Note that the centers of all spatial data objects in synthetic datasets fall within the unit square.

Queries. For model training, we run range queries over both the reference R-Tree and the RLR-Tree.
Range queries of different sizes are generated. During model training, when a range query is
generated, we first set its center the same as the center of the last inserted object; Its length to
width ratio is then randomly selected in the range [0.1, 10]. For evaluation, we randomly generate
1,000 range queries for each query size ranging from 0.005% to 0.5% of the whole region [33]. Note
that queries used for training and testing are generated separately and hence different.
Baselines. We compare with R-Tree and its variants that are designed for dynamic environments
where updates may occur frequently. Baselines used in the experiments include R-Tree [14], which
is also the reference tree used for model training, R*-Tree [2], RR*-Tree [3] which is reported to have
the best query performance among R-Tree variants built using one-by-one insertion for supporting
queries in dynamic environments. Note that PostgreSQL uses R-Tree. We also compare with LISA
[24] which is the only disk based learned index that returns exact results for range queries and KNN
queries. Note that LISA only supports point data and is not designed for dynamic environments.
We test it on the two real-life datasets, which contain point objects, so as to show where RLR-Tree
stands compared to this recently proposed learned spatial data index. We do not focus on any
comparison with packing R-Trees that are designed for the static databases [18] or other learned
indexes as they are not designed for dynamic environments as discussed in Section 5. However, we
include STR [23] as a reference to show what packing R-Tree can achieve with all the data available.
Moreover, we conduct experiments to show that RLR-Tree can be used to maintain packing R-Trees
in a dynamic environment and outperforms previous methods.
Measurements. For measurements of query performance, we consider both running time and
the I/O cost. We find that both measures yield qualitatively consistent results (as exemplified in
Figures 4 and 5). We follow [24] to report the average relative I/O cost mainly. For each query, the
relative I/O cost of an index is computed by the ratio of the I/O cost for it to answer the query to
the I/O cost for an R-Tree to answer the same query. Smaller relative I/O costs indicate better query
performance compared with the R-Tree. R-Tree is chosen as the reference because the RLR-Tree
reduces to the R-Tree when the action space size for both RL ChooseSubtree and RL Split is set to
be 1. It is therefore easy to observe the improvement our proposed method achieves. Note that this
choice does not affect the reporting of the experimental results as RLR-Tree is eventually compared
with all the baselines.
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Parameter settings. Table 3 shows a list of parameters and their corresponding values tested in
our experiments. The default settings are bold. For all R-Tree variants evaluated in this paper, we
follow [3] and maintain a maximum of 50 and a minimum of 20 child nodes per tree node.

Table 3. Parameters and Values

Parameters Values
Data distribution Zipf, GAU, UNI
Dataset size (million) 1, 25, 50, 75, 100
Training set size (thousand) 25, 50, 100, 200
Training query size (%) 0.005, 0.01, 0.5
Testing query size (%) 0.005, 0.01, 0.05, 0.1, 0.5
Action space size 𝑘 2, 3, 5, 10
Number of dimensions 2, 4, 6, 8, 10

The DQN models for both ChooseSubtree and Split contain 1 hidden layer of 64 neurons with
SELU [21] as the activation function. In the training process, the learning rate is set to be 0.003
for RL ChooseSubtree and 0.01 for RL Split. The initial value of 𝜖 is set to be 1 and the decay rate
is set to be 0.99. The value of 𝜖 is never allowed to be less than 0.1 in order to maintain a certain
degree of exploration throughout model training. The replay memory can contain at most 5,000
(𝑠, 𝑎, 𝑟, 𝑠′) tuples. Network update is done by first sampling a batch of 64 tuples from the replay
memory. Then Θ is updated by using gradient descent of the MSE loss function to close the gap
between the Q-value predicted by Θ and the optimal Q-value derived from Θ− . The discount factor
is set to be 0.95 for RL ChooseSubtree and 0.8 for RL Split. Synchronization of Θ− with Θ is done
once every 30 network updates.

During the model training for RL ChooseSubtree (resp. RL Split), the deterministic splitting (resp.
insertion) rules are set to be the same as that used by the reference tree which is minimum overlap
partition (resp. minimum node area enlargement). We train the RL ChooseSubtree and Splitmodels
for 20 and 15 epochs, respectively, and set 𝑝𝑎𝑟𝑡𝑠 in Algorithm 2 to be 15, i.e., the training dataset is
divided into 15 equal parts. The action space size 𝑘 for both RL ChooseSubtree and RL Split is set
to be 2 by default. Note that the trivial case of 𝑘 = 1 simply gives us the reference tree.

We train our models on NVIDIA Tesla V100 SXM2 16 GB GPU using PyTorch 1.3.1. All indexes
are coded using C++.
4.2 Experimental Results
Our experiments aim to find out:
(1) Can RL ChooseSubtree and RL Split individually build better R-Trees (Section 4.2.1 and

Section 4.2.2)?
(2) Can RLR-Tree outperform the baselines for range queries, KNN queries and spatial join

queries (Section 4.2.3)?
(3) How well RLR-Tree handles updates in dynamic environments (Section 4.2.4)?
(4) The effect of different parameters on performance such as the training dataset size, the action

space size of the RL models and the training query size (Section 4.2.5);
(5) How well RLR-Tree can be incorporated into a packing R-Tree, how well RLR-Tree scales

with dimensions and how large RLR-Tree’s construction time and size are (Section 4.2.6)?
4.2.1 RL ChooseSubtree. Figure 4 reports the average relative I/O cost of the RL ChooseSubtree
on all the five datasets. In this set of experiments, we set the dataset size of the three synthetic
datasets to be 100 million so that all the five datasets have similar sizes. RL ChooseSubtree achieves
significant improvements and outperforms R-Tree consistently on all datasets. The best relative I/O
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Fig. 4. Performance of RL ChooseSubtree Fig. 5. Performance of RL Split

Fig. 6. RL ChooseSubtree, RL Split and RLR-Tree

cost is 0.18 and observed on the GAU dataset. It is remarkable that although the training dataset
size is only 100,000, the trained model can be applied on large datasets successfully.
Query Processing Time. Figure 4 also reports the query processing time of RL ChooseSubtree.
We observe that the ratio of the query time of RL ChooseSubtree to that of R-Tree is generally
consistent with the relative I/O cost on all the five datasets. For example, on the Zipf dataset, the
relative I/O cost for RL ChooseSubtree is 0.2 while the query time for RL ChooseSubtree is about
1/5 of that for R-Tree. Therefore, for the remaining of the paper, we follow [24] and report only
relative I/O cost as a measure of query performance.
4.2.2 RL Split. To evaluate the performance of RL Split, Figure 5 reports results on all the five
datasets. Similar to Section 4.2.1, we also set the dataset size of the three synthetic datasets to be
100 million. RL Split achieves significant improvements and outperforms the R-Tree consistently
on all the five datasets. The best relative I/O cost is 0.24 and observed on the Zipf dataset.
Query Processing Time. Figure 5 also reports the query processing time of RL Split. Similar to
RL ChooseSubtree, I/O cost and query time show consistent results.
4.2.3 RLR-Tree. This set of experiments is to evaluate the performance of RLR-Tree, which is
constructed from a combined RL ChooseSubtree and RL Split model.
The Enhanced Training Process.We first compare the performance of RL ChooseSubtree, RL
Split, Naive RLR-Tree, which is obtained by directly applying RL ChooseSubtree and RL Split, and
RLR-Tree, which uses the enhanced training process (Section 3.4), on all the five datasets in terms
of relative I/O cost. As shown in Figure 6, by applying the enhanced training process, RLR-Tree has
the best performance on all datasets. Specifically, the enhanced training process achieves up to
66.7% of improvements in query performance compared to Naive RLR-Tree. The most significant
improvement is observed on the GAU dataset.
Range queries. We evaluate the query performance of the RLR-Tree on both real datasets using
range queries of different sizes and report the results in Figure 7. Note that we also include STR
[23] to observe where RLR-Tree stands, although packing R-Trees are not designed for dynamic
environments. We make two main observations. Firstly, RLR-Tree consistently outperforms the
baselines, including the R*-Tree, the RR*-Tree, LISA and even STR. Specifically, RLR-Tree outper-
forms R*-Tree, RR*-Tree, LISA and STR by up to 48.7%, 48%, 53.8% and 25.0% respectively. Secondly,
RLR-Tree’s advantages over baselines get increasingly significant as query size decreases. This is
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Fig. 7. RLR-Tree Performance (RangeQueries) Fig. 8. RLR-Tree Performance (KNNQueries)

Fig. 9. RLR-Tree Performance (Spatial JoinQueries)

because a larger query intersects with a larger number of tree nodes, and more tree nodes will then
be traversed when answering it. In this case, all R-Tree based indexes need to visit a larger portion
of the data and the difference between different indexing techniques will diminish. Similar results
are also reported in [33]. Consider an extreme case where a range query covers the entire data
space. Then all tree nodes will be traversed, irrespective the index used, and thus relative I/O cost
will be close to 1.
KNN queries. To evaluate the performance of the RLR-Tree for types of queries that are not used
in the model training process, we look into the K-Nearest-Neighbor (KNN) queries. A KNN query
returns the 𝐾 nearest objects to a given query point. In our experiments, we consider different
𝐾 values, i.e. 𝐾 ∈ {1, 5, 25, 125, 625}. For each 𝐾 value, 1,000 uniformly distributed query points
are randomly generated in the data space. We use the method proposed in [16], which is the
state-of-the-art KNN query processing algorithm to compute KNN queries accurately. We would
like to highlight that we also tested the algorithm proposed in [35] and observed similar results.
Due to space constraint, we do not report the details of the experiments results obtained using the
method proposed in [35]. Note that we also include STR [23] for reference. Figure 8 shows that the
RLR-Tree consistently outperforms all the baselines for all values of 𝐾 on both real datasets. We
also observe that the relative query performance of RLR-Tree to R-Tree gets better for larger 𝐾
values. The finding that the RLR-Tree also outperforms the baselines is particularly interesting —
the RLR-Tree is designed and trained to optimize the performance of range queries, rather than
KNN queries. Additionally, we compute the reward and design the state features for the RLR-Tree
in a way such that the model is trained to minimize the number of nodes accesses when answering
range queries and not KNN queries. However, despite those design features that do not favour
KNN queries, RLR-Tree still has the best performance for KNN queries.
Spatial join queries. In this experiment, we evaluate the performance of the RLR-Tree on both
real datasets for the processing of spatial join queries. For a query set 𝑄𝑆 and a dataset 𝐷𝑆 , a
spatial join query returns all pairs of objects (𝑞𝑜, 𝑑𝑜), where 𝑞𝑜 ∈ 𝑄𝑆 and 𝑑𝑜 ∈ 𝐷𝑆 , such that the
Euclidean distance between 𝑞𝑜 and 𝑑𝑜 is less than a given threshold 𝑑𝑖𝑠𝑡 [17]. In our experiments,
we consider different 𝑑𝑖𝑠𝑡 values (as a percentage of the size of the data space along dimension 𝑥 ),
i.e. 𝑑𝑖𝑠𝑡 ∈ {0.005%, 0.01%, 0.05%, 0.1%, 0.5%}. For each 𝑑𝑖𝑠𝑡 value, we consider a query set containing
1,000 random query points. To process spatial join queries, we use the index nested-loop join
algorithm described in [17] where the dataset is indexed and the query set is not indexed. Figure 9
shows that RLR-Tree consistently outperforms the baselines and its advantage is more significant
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Fig. 10. Updates without Change in Data Distribution

Fig. 11. Updates with Change in Data Distribution

for smaller values of 𝑑𝑖𝑠𝑡 . Note that these trends are generally consistent with that observed for
range queries.
4.2.4 Dynamic Updates. We aim to evaluate the performance of the RLR-Tree when handling
updates in dynamic environments.
Updates without change in Data Distribution. In the first set of experiments, we follow previous
work such as [43] and assume that future unseen data follow the same distribution as existing data.
We first train and build two RLR-Trees of size 100 thousand using the GAU dataset and the Zipf
dataset with their default settings respectively. Then up to 100 million data objects from the same
data distributions are inserted into the respective trees using the corresponding trained models. As
shown in Figure 10, RLR-Tree consistently outperforms the baselines and RLR-Tree’s advantage
over the baselines remain significant throughout. Specifically, the RLR-Tree outperforms R*-Tree
and RR*-Tree by up to 89.3% and 79.2% respectively. It is remarkable that the model performance
gets better as more data objects are inserted. This could be because as more data objects are inserted,
the index tree becomes larger and more RL ChooseSubtree and RL Split operations occur. Hence,
the accumulated benefits from these RL operations enable RLR-Tree to outperform the R-Tree more
significantly.
Updates with change in Data Distribution. As mentioned earlier, previous work mostly assumes
that future unseen data follow the same distribution as existing data. However, we would like to
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Fig. 12. Illustration of Change in Gaussian Distribution

take into consideration a certain degree of change in data distribution so as to show the robustness
of our proposed method. In the second set of experiments, we first train and build 2 RLR-Trees
of size 100,000 using the GAU (𝜇 = 0.5, 𝜎 = 0.2) dataset and the Zipf (𝑎 = 4) dataset with their
default settings respectively. For the RLR-Tree built using the GAU dataset, we use the GAU-
trained model to insert up to 100 million spatial objects from GAU distribution with different
mean (𝜇 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}) and standard deviation (𝜎 ∈ {0.2, 0.4, 0.6, 0.8, 1}), and report
the average relative I/O cost of 1,000 random queries in Figure 11a and Figure 11b, respectively. For
the RLR-Tree built using the Zipf dataset, we use the Zipf-trained model to insert up to 100 million
spatial objects from Zipf distribution with different distribution parameter (𝑎 ∈ {4, 5, 6, 7, 8}), and
report the average relative I/O cost of 1,000 random queries in Figure 11c. The scatter plots in
Figure 12 illustrates the changes in data distribution for the default GAU dataset. It shows that
significant changes in data density and data locations are considered in the experiments. The
results show that, even without retraining the RL model, it consistently outperforms the baselines
despite slight deterioration of performance amid changes in data distributions. In contrast, LISA
[24] needs to retrain its model when the number of data objects to insert is four times the size of
the initial dataset even when there is no change in data distribution. One possible reason for the
resilient performance of the RLR-Tree is that it does not rely on any learned CDF, and some of the
knowledge initially learned by the model remains useful even if the data distributions are changed.
Applying Trained Models on Different Dataset.We attempt to train RL ChooseSubtree and RL
Split models on one dataset and use the trained models to build RLR-Tree on a different dataset. In
Figure 11d, for the two real datasets, IND and CHI, the yellow bars represent the models trained on
the IND (resp. CHI) dataset and then applied on the CHI (resp. IND) dataset; for the two synthetic
datasets, GAU and Zipf, the yellow bars represent the models trained on the GAU (resp. Zipf) dataset
and then applied on the Zipf (resp. GAU) dataset. For the two real datasets, although the models
are trained on a different real dataset, the constructed RLR-Trees still outperform all baselines.
Compared with the models that are trained and applied on the same real dataset, these RLR-Trees
only experience a small degree of performance deterioration. This is perhaps because these real
datasets share common features as they mostly consist of "clusters" of high data density which
represent developed regions surrounded by vast regions of low data density which represent rural
areas. For the two synthetic datasets, as we train the models on a different synthetic dataset, the
constructed RLR-Trees outperform R*-Tree but are slightly outperformed by RR*-Tree. It shows
that the query performance of the trained models tends to deteriorate more significantly when
data changes are more drastic.

4.2.5 The Effects of Parameters.
The tuning of the parameters is done on a training dataset without touching any testing dataset.

Specifically, we evaluate specific parameters values by using the trained RL models to build an
RLR-Tree on the training dataset and then comparing with the reference tree, which is an R-Tree.
Note that after we tune the parameters on the training dataset, we use the same parameters values
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Fig. 13. Effect of Varying Training Dataset Sizes

for all the other datasets in the experiment, i.e., we do not tune parameters for each dataset. Small
deviations from the default values do not have a significant impact on the model performance.
Training Dataset Size. This experiment is to evaluate the effect of training dataset size on the
performance of the RLR-Tree. We would expect better query performance if we train the RL
ChooseSubtree and RL Split models on the full dataset. However, the training is slow on large
datasets. Instead, we propose to use a small training dataset. Experimental results are shown in
Figure 13. First, we observe that the training time of RL ChooseSubtree model for different data
distributions is similar, and increases significantly with the size of the training dataset. As expected,
the query performance of the trained models improves as the training dataset size increases from
25,000 to 100,000. However, the query performance becomes stable after the dataset size reaches
100,000, and the improvement of using training dataset of size 200,000 over 100,000 is not significant.
The results for RL Split are qualitatively similar to those for RL ChooseSubtree. Therefore, we set
the training dataset size to be 100,000 by default which achieves a good tradeoff between training
time (generally no more than 40 minutes) and query performance. Note that RLR-Tree only needs
to be trained once on a small training dataset and the learned models can be used on large dataset
to build index and then to handle updates.
The Value of 𝑘 .We would expect the action space size 𝑘 to have a direct impact on RLR-Tree’s
performance. On the one hand, as more candidates are shortlisted to form the action space, more
actions are available to be selected for the trained model. On the other hand, model performance
can be adversely affected when the action space is large as the trained model may not do a good
job to filter out “bad” candidates. To find a good 𝑘 value, we test different values of 𝑘 on all the five
datasets, using RL ChooseSubtree as an example. From Figure 14a, we observe qualitatively similar
trends on all the five datasets. We make two observations. Firstly, recall that 𝑘 = 1 is the trivial case
that generates the reference tree. By including one additional candidate in the action space, i.e.,
when 𝑘 = 2, we achieve significant query performance improvement for RL ChooseSubtree. The
best performance improvement is 82% on the GAU dataset. Secondly, RL ChooseSubtree has the
best result at 𝑘 = 2 for all the five datasets. As 𝑘 value increases, model performance deteriorates
gradually which is expected. When 𝑘 value approaches and exceeds 10, the RL ChooseSubtree
model starts to fail to outperform the R-Tree. Similar trends are also observed for RL Split.
Training Query Size. This experiment is to evaluate the effect of the training query size on the per-
formance of RLR-Tree. Figure 14b reports the average query performance of RL ChooseSubtree for
each training query size for each dataset. We observe rather poor performance of RLChooseSubtree
when using the largest training query size, i.e. 0.5%. For example, on the GAU dataset, the model
performance with training query size of 0.5% is more than three times poorer than that with our
default setting of 0.01%. When using training query size of 0.005%, model performance shows
slightly poorer results on all 5 datasets. Therefore, we set the training query size to be 0.01% by
default. We observe similar trends for RL Split.
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(a) Varying 𝑘 Values (b) Varying TrainingQuery Sizes

(c) Different NN Structures (d) Varying 𝑝𝑎𝑟𝑡𝑠 Values
Fig. 14. The Effects of Parameters

Neural Network Structure. This experiment is to evaluate the effect of the neural network
(NN) structure of the RL model on the performance of RLR-Tree. Figure 14c reports the query
performance (green bars) and the model training time (black bars) of RLChooseSubtree for different
NN structures for the default GAU dataset. Note that L𝑎N𝑏 represents a neural network that consists
of 𝑎 hidden layers of 𝑏 neurons. We observe quite similar model performance for different NN
structures. However, as the NN structure gets more complicated, model training time increases
significantly. Therefore, we set the NN structure to be L1N64 by default. We observe similar trends
for RL Split.
The Value of 𝑝𝑎𝑟𝑡𝑠.We would expect parameter 𝑝𝑎𝑟𝑡𝑠 (Section 3.3.2, Algorithm 2) to have a direct
impact on the performance and the training time of RL Split. When 𝑝𝑎𝑟𝑡𝑠 is larger, there are more
base trees (𝑇𝑏𝑎𝑠𝑒 ) in each training epoch. As the model is trained using a larger number of base
trees of different sizes, we could expect model training to be more effective. However, building
more base trees (𝑇𝑏𝑎𝑠𝑒 ) leads to a larger overhead in model training time. Figure 14d reports the
query performance (green line) and the model training time (black line) of RL Split for different
𝑝𝑎𝑟𝑡𝑠 values for the default GAU dataset. We observe that as 𝑝𝑎𝑟𝑡𝑠 increases from 5 to 15, the
performance of RL Split improves steadily. As 𝑝𝑎𝑟𝑡𝑠 increases from 15 to 20, there is no more
significant performance improvement. We also observe significantly larger model training time for
larger values of 𝑝𝑎𝑟𝑡𝑠 . Therefore, we set the value of 𝑝𝑎𝑟𝑡𝑠 to be 15 by default, which achieves a
good balance between model performance and training time.
4.2.6 Other Experiments.
Using RLR-Tree Models to Handle Updates on a Packing R-Tree. Packing methods can be
used to build an R-Tree when data is available at the time of building an index. However, to maintain
a packing R-Tree in the presence of updates, we still need to use one-by-one insertion methods.
Furthermore, database systems such as PostgreSQL use R-Tree [14] to index spatial data. As a
result, one-by-one insertion methods for updates remain relevant and vital. This experiment is
to investigate how well the RLR-Tree model can handle updates on an existing packing R-Tree.
We first use the STR packing method [23] to build two trees of size 1 million using the default
GAU and Zipf datasets respectively. Then using corresponding RLR-Tree models, we insert up to
100 million spatial objects from corresponding datasets to the two trees, and report the average
relative I/O cost of 1,000 random queries, respectively in Figure 15. On the same packing R-Tree,
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Fig. 15. Incorporation of RLR-Tree into Packing R-Tree

Fig. 16. Changing Dimensions Fig. 17. Index construction time

Table 4. Index size for GAU datasets

Dataset size (million) 1 25 50 75 100
RLR-Tree size (MB) 39 975 1950 2925 3900

we compare different one-by-one insertion methods, i.e., RLR-Tree, RR*-Tree and R*-Tree, that are
used for dynamic updates. In this experiment, we also compare with STR [23] as a reference. We
observe that compared with other one-by-one insertion methods for updates, the advantage of
RLR-Tree gets more significant as more data objects are inserted.
Number of Dimensions. This experiment is to show how well RLR-Tree scales with dimensions.
We vary the number of dimensions from 2 to 10. For each case, we generate a synthetic dataset with
25 million objects from the Uniform distribution, which is commonly used for high dimensional
synthetic datasets in previous works [3, 27]. For each dataset, we report the average relative I/O cost
for answering 1,000 random queries in Figure 16. The average data selectivity of the query workload
for each dataset is kept constant at 0.01%. We observe that RLR-Tree consistently outperforms
all baselines all the time. Moreover, its advantage becomes more significant as the number of
dimensions increases, which illustrates the robustness of RLR-Tree w.r.t. the number of dimensions.
Index Construction Time and Size. The index construction time is similar for different data
distributions of the same size, and we use the GAU dataset as an example. As shown in Figure 17,
index construction time increases almost linearly with increase in dataset size. The construction time
of RLR-Tree is comparable to that of R*-Tree and RR*-Tree. And we expect RLR-Tree construction
time to be shorter when using better GPU devices. For index size, the RLR-Tree and other baselines
are similar. Therefore, we report the RLR-Tree sizes for the GAU dataset of different sizes. As shown
in Table 4, RLR-Tree size increases linearly as dataset size increases.

5 RELATEDWORK
5.1 Spatial indexes
We next introduce three categories of spatial indexes.
R-Tree and its variants. The category of indexes partitions the dataset into subsets and indexes
the subsets. Typical examples include the R-Tree and its variants, such as R∗-Tree [2], R+-Tree [38],

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 63. Publication date: May 2023.



The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data 63:23

and RR∗-Tree [3]. There also exist works that explore the query workload such as QUASII [30] and
“AI+R”-Tree [15]. QUASII [30] is a main memory based spatial data index that is built by optimizing
on a known query workload. Note that QUASII only indexes the subset of the data queried by the
given query workload. “AI+R”-Tree[15] does not build a better R-Tree. Instead, it takes as input a
traditional R-Tree and a given query workload, and proposes to use ML techniques to improve the
query processing algorithm for range queries. In contrast, our proposed method aims to build a
better R-Tree (not to propose any new query processing algorithm), and the RLR-Tree does not
need query workloads as input.
Packing. An alternative way of R-Tree construction is to pack data objects into leaf nodes and
build the tree bottom up. The original R-Tree and almost all of its variants are designed for a
dynamic environment, being able to handle updates, while packing methods are for static databases
[18]. Packing needs to have all the data before building indexes, which is not always available.
The existing packing methods explore different ways of sorting spatial objects to achieve better
ordering of the objects and eventually better packing. Some ordering methods [1] are based on
the coordinates of objects, such as STR [23], TGS [12] and the lowx packed R-Tree [36] and other
ordering methods are based on space filling curves such as z-ordering [28, 33], Gray coding [8] and
the Hilbert curve [9].
Other spatial indexes. In space partitioning based indexes, such as kd-Tree [4] and Quad-Tree [11],
the space is recursively partitioned until the number of objects in a partition reaches a threshold.

5.2 Learned indexes
Learned one-dimensional indexes. The idea behind learned indexes [6, 10, 20, 22, 42] is to learn
a function that maps a search key to the storage address of a data object. The idea of learned indexes
is first introduced by [22], which proposes the Recursive Model Index (RMI) to learn the data
distribution. It essentially learns a cumulative distribution function (CDF) using a neural network
to predict the rank of a search key.
Learned spatial indexes. Several learned spatial indexes have been proposed. The Z-order
model [40] extends RMI to spatial data by using a space filling curve to order data points and then
learning the CDF. Recursive spatial model index (RSMI) [32] further develops the Z-order idea
[40]. LISA [24] is a disk-based learned index. It partitions the data space with a grid, numbers the
grid cells, and learns a data distribution based on this numbering. Similar to Z-order model [40]
and RSMI [32], Flood [27] also maps a dataset to a uniform rank space before learning a CDF.
Differently, it utilizes workload to optimize the learning of the CDF, and it learns the CDF of each
dimension separately. Tsunami [7] overcomes the limitation of Flood in handling skewed workload
and correlated data. The ML-Index [5] maps point objects to a one-dimensional space and then
learns the CDF. Zacharatou et al. [45] shares the vision of incorporating distance-bounded spatial
approximations in spatial databases, which has great potential to improve the query processing of
learned spatial indexes.
Remark. These learned indexes all aim to learn a CDF for a particular data to replace the traditional
indexes. However, RLR-Tree is fundamentally different. Instead of learning any CDF, we train RL
models to handle ChooseSubtree and Split operations. Furthermore, these learned indexes have
the following limitations compared with our solution. First, they can only handle spatial point
objects while our proposed method can handle any spatial object, such as rectangular objects.
Second, they all need customized algorithms to handle each type of query. They focus on certain
types of queries and it is not clear how they can process other types of queries. For example,
some of them [5, 7, 27] do not consider KNN or spatial join queries, which are important spatial
queries. Some learned indexes [24] extend their algorithm for range queries to handle KNN queries
by issuing a series of range queries until 𝑘 points are found. However, the query performance
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largely depends on the size of the region used. In contrast, RLR-Tree simply uses existing query
processing algorithms for R-Tree to handle different types of queries. Third, some of these learned
indexes [32, 40] return approximate query results while our query results are accurate. Fourth,
both Flood and Tsunami need the query workload as the input while RLR-Tree does not assume
the query workload to be known. Fifth, updates are not discussed for Flood, Tsunami or the ML-
Index. Although RSMI [32] and LISA [24] can handle updates, their models have to be retrained
periodically to retain good query performances. In contrast, RLR-Tree readily handles updates
without the need to frequently retrain the model. Finally, unlike existing learned indexes, our
proposed method makes no modification to the R-Tree structures currently deployed by databases,
and hence is readily applicable in their implementations.
5.3 Applications of Reinforcement Learning
To the best of our knowledge, no previous work uses RL to build a better R-Tree. RL has been
successfully used to solve database problems, such as tuning tasks [25, 39, 46], similarity search [41],
join order selection [44], index selection [37], and data partitioning [43]. In particular, QD-Tree [43]
is proposed to partition data into blocks such that the size of each block is larger than a predefined
size 𝑏 and the data skipping ratio for a given query workload is maximized. QD-Tree is unsuitable
for spatial data indexing for the following reasons. (1) QD-Tree does not have a mechanism that
generates nodes/blocks of a fixed size to build a balanced tree, and maintains the fixed-size nodes
in the presence of updates, which is desirable for database indexes. (2) The complexity of training a
QD-Tree is prohibitively expensive if it is used for indexing. In the worst case, its complexity is
𝑂 (𝑒 ∗𝑛2/𝑏+𝑒 ∗ 𝑓 +𝑒 ∗ |𝑄 | ∗𝑛/𝑏), where 𝑛 is the data size, 𝑏 is the block size, 𝑒 is the number of training
episodes, 𝑓 denotes the cost of one neural network forward pass, and |𝑄 | is the size of the query
workload. Since QD-Tree is designed to partition data into large blocks each of which contains more
than 100k tuples [43], the complexity might be acceptable. In our preliminary experiments of using
QD-Tree to process range queries, if we follow [43] and set 𝑏 = 100k, the performance is orders of
magnitude worse than R-Tree. On the other hand, if we set 𝑏 = 50 as other indexes considered in
this paper, on the IND dataset which contains 100 million objects, QD-Tree was trained for more
than 72 hours and no convergence was observed. (3) QD-Tree relies on a known query workload,
which may not be available. The query workload determines the action space of QD-Tree and there
is no guarantee that there always exists an action to partition an internal node. As a result of these
differences, the MDP design of RLR-Tree is fundamentally different from that of QD-Tree.

6 CONCLUSIONS AND FUTUREWORK
We propose an RL based method to construct a better R-Tree, i.e., the RLR-Tree. Experimental
results show that RLR-Tree consistently outperforms the R-Tree variants for range queries, KNN
queries and spatial join queries. We would like to highlight that RLR-Tree has especially remarkable
performance on larger datasets and is able to handle dynamic updates amid certain changes in data
distribution.
This work takes a first step to use machine learning to build a better R-Tree, and we believe

it would open a few directions for future work: 1) further explore and refine the designs of the
states, the actions and the reward signal; 2) extend the idea to index enriched spatial data, such as
spatial-temporal data, moving objects, and spatial-textual data; 3) explore the application of other
machine learning models in the domain of spatial data indexing.
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