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Abstract—Trajectory data is used in various applications
including traffic analysis, logistics, and mobility services. It is
usually collected continuously by sensors and accumulated at
a server resulting in big volume. A common practice is to
conduct trajectory simplification which is to drop some points of
a trajectory when they are being collected (online mode) and/or
after they are accumulated (batch mode). Existing algorithms
usually involve some decision making tasks (e.g., deciding which
point to drop), for which, some human-crafted rules are used. In
this paper, we propose to learn a policy for the decision making
tasks via reinforcement learning (RL) and develop trajectory
simplification methods based on the learned policy. Compared
with existing algorithms, our RL-based methods are data-driven
and can adapt to different dynamics underlying the problem.
We conduct extensive experiments to verify that our RL-based
methods compute simplified trajectories with smaller errors
while running comparably fast (and faster in the batch mode)
compared with existing methods.

Index Terms—trajectory data, trajectory simplification, rein-
forcement learning

I. INTRODUCTION

Trajectory data is a data type that captures traces of moving
objects such as vehicles, pedestrians, robots, etc. It is central to
many applications such as urban mobility analysis, logistics,
transportation, sports games, etc. Trajectory data is typically
generated continuously and collected by remote sensors such
as GPS devices. One typical scenario is that a sensor peri-
odically checks the coordinates and time, which corresponds
to a time-stamped location (called spatio-temporal point or
simply point), and stores the point in a buffer. Typically, a
sensor has a small storage budget, low computation capability,
and limited network bandwidth. A consequent issue is that the
buffer would become occupied frequently and the workload of
transmitting the points is high. In addition, in some applica-
tions, there could be hundreds of thousands of sensors, which
collect trajectory data simultaneously. Once the trajectory data
collected by all these sensors is accumulated at a server, the
volume would be huge, which has been illustrated by several
existing studies (see the survey paper [1]). A consequent issue
is that the huge volume of trajectory data would increase the
storage cost and more importantly make the query processing
on the data expensive.

A common practice that has been used to deal with the
aforementioned two issues is to conduct trajectory simplifi-
cation, which essentially is to drop some points of a given
trajectory and keep the remaining ones as a simplified tra-
jectory. Specifically, in the online mode, the trajectory data

is inputted point by point and once a point is dropped, it is
no longer accessible. In the batch mode, the trajectory data
is inputted completely once and remains accessible during the
whole course of trajectory simplification. The rationale behind
trajectory simplification is two-fold. First, not all points of a
trajectory carry equal amount of information and some carry
little or even no information. For example, when an object
moves along a straight line at a constant speed, all points
except for the first and last ones carry no information and could
be dropped. Second, with some point dropped, the burden
on the transmission, storage, and query processing would
be lowered down significantly. In this paper, we consider
a problem of trajectory simplification, which is to drop at
least a certain number of points (or equivalently to keep at
most a certain number of points) such that the information
loss, captured as the “error” of the simplified trajectory, is
minimized. We call this problem Min-Error.

Quite a few algorithms exist for the Min-Error problem
in the online mode, including STTrace [2], SQUISH [3],
and SUISH-E [4]. All these algorithms share the idea that
it maintains a buffer of a certain size and keeps storing points
in the buffer, and whenever the buffer becomes full, it picks
one point from the buffer and drops it. In addition, they all
make the decision on which point to drop by defining some
“importance value” of each point and always dropping the
point with the least importance value. Roughly, the importance
value of a point is defined as some form of error that would
be introduced when the point is dropped since a smaller
error means that the point is less important and should be
dropped. When a point is dropped, the importance values
of the remaining points should be updated, in which the
existing algorithms differ from one another. STTrace simply
re-computes the values, while SQUISH distributes the value
of a point that has been dropped to its neighboring points (so
that the importance values would be carried on) and SQUISH-
E is similar to SQUISH with only some slight refinements on
the update procedure. As could be noticed, these algorithms
are mainly based on some human-crafted rules for deciding
which point to drop.

In this paper, we propose a reinforcement learning (RL)
method for the trajectory simplification problem in the online
mode. We treat the trajectory simplification problem (in the
online mode) as one of a sequential decision process, i.e., it
scans a trajectory sequentially, and whenever the buffer is full,
it makes a decision on which point to drop. We then model the



process as a Markov decision process (MDP), learn the policy
for the MDP via a widely-used policy gradient method [5]–
[7], and develop a trajectory simplification method based on
the learned policy. We call this method RLTS. Compared with
existing algorithms, our RLTS method computes simplified
trajectories with smaller errors, which is mainly due to its data-
driven nature and also its capability of adapting to different
dynamics of the inputted points. The RLTS method has the
time complexity of O((n−W ) logW ), where n is the number
of points in the inputted trajectory and W is the buffer size,
which is the same as that of existing algorithms STTrace,
SQUISH, and SQUISH-E.

We also propose a variant of RLTS, called RLTS-Skip,
by augmenting the MDP with additional actions of skipping
points from being scanned. The rationale is that some points
may carry little information so that they can be dropped
immediately without being inserted in the buffer when they are
being scanned, as RLTS does. The benefit is that the efforts of
deciding and taking actions for these points that are skipped
are saved and the efficiency is boosted. In addition, RLTS-
Skip accepts a parameter J , which controls the maximum
number of points that are allowed to be skipped. Therefore,
RLTS-Skip provides a tunable trade-off between efficiency
and effectiveness with different settings of J . Note that when
J = 0, RLTS-Skip reduces to RLTS.

In the batch mode, we have more data access than in the
online mode. Specifically, we have access to all points of a
trajectory during the whole course of trajectory simplification
in the batch mode, while we can only access those points
that are stored in the buffer in the online mode. With the
increased data access, we have more options of defining the
states of the MDP. We investigate three state definitions,
which capture different portions of the points of a trajec-
tory, and correspondingly develop three different categories
of algorithms, namely (1) RLTS and RLTS-Skip, (2) RLTS+
and RLTS-Skip+, and (3) RLTS++ and RLTS-Skip++. RLTS
and RLTS-Skip are exactly the same as those for the online
mode, whose underlying states are defined based on those
points stored in the buffer only. RLTS+ and RLTS-Skip+
are enhanced versions of RLTS and RLTS-Skip, respectively,
where their states are defined based on all those points that
have been scanned (including those that are stored in the buffer
and those that have been dropped). In addition, RLTS-Skip+
augments the states further with the information of the J
points that follow the point that is being scanned. RLTS++
and RLTS-Skip++ ultimately consider all points for defining
states. From RLTS and RLTS-Skip, to RLTS+ and RLTS-
Skip+, to RLTS++ and RLTS-Skip++, more information is
captured for defining the states and correspondingly, the MDPs
become more complex and the methods take more time costs.
Specifically, the time complexities of the three categories of
methods are O((n −W ) logW ), O((n −W )(n′ + logW )),
O((n − W )(n′ + log n)), respectively, where n′ is the cost
of computing the value of a point and is bounded by n (in
practice, n′ ≤ n).

In summary, our main contribution is as follows. We

propose a reinforcement learning (RL)-based method called
RLTS for trajectory simplification, which is the first of its
kind. RLTS is data-driven and has the ability to adapt to
different dynamics of underlying points. In addition, RLTS
is generic and works for multiple error measurements while
many existing algorithms work for some specific ones only.
Furthermore, we propose a variant of RLTS, i.e., RLTS-Skip,
which runs faster than RLTS and provides a controllable trade-
off between the effectiveness and efficiency. Particularly for
the batch mode, we investigate three variants of the method
given the increased data access. Extensive experiments on
real-life datasets demonstrate that our methods have better
effectiveness and comparable (or better in the batch mode)
efficiency compared with existing algorithms.

The rest of paper is organized as follows. We review the
literature in Section II and give the problem definition in
Section III. We introduce our RLTS and RLTS-Skip algorithms
for the online and batch modes in Section IV and in Section V,
respectively. We present our experimental results in Section VI
and finally conclude our paper in Section VII.

II. RELATED WORK

A. Trajectory Simplification in Online Mode

In the online mode, streaming trajectory data is continuously
collected by sensors and stored in a local buffer. The trajectory
simplification problem is to decide which points to be dropped
and correspondingly which to be kept in the buffer and sent
to the server’s side later on. Among the existing studies of
trajectory simplification in the online mode, [2]–[4] target
the Min-Error problem. In [2], [8], the STTrace algorithm is
proposed, which processes incoming points one by one and
for each one, it first decides whether to drop it. If so, it moves
to the next one; and if not, it drops one existing point in the
buffer, and then inserts the point that is being processed to the
buffer. The decision making is based on some heuristic values
defined for the points. In [3], the authors propose the SQUISH
algorithm and in [4] they propose an enhanced version of
SQUISH called SQUISH-E. SQUISH and SQUISH-E follow
the framework of STTrace, but use different definitions for the
heuristic values of points. Each of these algorithms has the
time complexity of O((n −W ) logW ). Our solution differs
from these methods in that it is based on a policy learned
via reinforcement learning instead of human-crafted heuristic
values for decision making.

Other proposals on the online mode trajectory simplification
do not target the Min-Error problem and are reviewed as
follows. In [9]–[16], the authors address the problem of finding
a simplified trajectory such that the size is minimized while
satisfying a given error bound, i.e., a dual problem of the
Min-Error problem. In [17], the “dead reckoning” technique
is used for trajectory simplification, which predicts the future
location of a moving object based on the assumption of a
constant velocity and direction and discards a collected point
if it deviates from the predicated location significantly. In [18],
the authors propose to perform trajectory simplification based



on some topologically persistent features, which indicate the
importance of points.

B. Trajectory Simplification in Batch Mode

In the batch mode, all the points in the trajectory that is
to be simplified are inputted together and remain accessible
throughout the simplification process. Among those existing
studies of trajectory simplification in the batch mode, [9],
[19]–[21] study the Min-Error problem. Specifically, in [19],
the authors propose a dynamic programming algorithm called
Bellman. Bellman runs in at least cubic time, which is
prohibitively expensive for large datasets. In [8], [9], [20],
the authors explore different approximate algorithms for the
problem, including Top-Down and Bottom-Up. Top-Down is
inspired by the traditional Douglas-Peucker [22] algorithm and
the idea is to start with two points (the first one and the last
one) and then repetitively include a point that has the largest
error until the number of points reaches the storage budget.
Top-Down has the time complexity of O(Wn). Bottom-Up
starts with all points of the inputted trajectory and repetitively
drops a point that would introduce the smallest error until the
number of points left is within the storage budget. Bottom-Up
has the time complexity of O((n−W )(n′+log n)), where n′

is bounded by n. In [21], the authors propose an approximate
algorithm called Span-Search, which is specifically designed
for the error measurement direction-aware distance (DAD).
Span-Search has the time complexity of O(cn log2 n), where
c is a moderate constant. Again, these methods are mainly
based on human-crafted rules, while our method is based on
a learned policy.

Other trajectory simplification methods for the batch mode
do not target the Min-Error problem and are reviewed as
follows. In [23], [24] (and the references therein), the authors
study the dual problem of Min-Error. In [25], the authors
propose a solution for selecting a subset of most representative
points from a trajectory. In [26], the authors construct a
reference trajectory set to support trajectory compression.

C. Road Network based Trajectory Compression

Trajectory compression [27]–[32] is a related but different
problem. It aims to match the GPS points to road segments
and leverage the knowledge from road networks to achieve
a higher compression ratio. For example, Li et al [27] study
uncertain trajectory compression and develop a framework to
support probabilistic query processing in road networks. Chen
et al [28] propose an online algorithm for trajectory mapping
and compression utilizing vehicle heading directions upon the
underlying road network. This line of research focuses on
trajectory data that is generated on road networks while our
work focuses movements in a free space, such as those of
pedestrians, sports players, animals, etc., which are common
and have been extensively studied.

D. Reinforcement Learning

Reinforcement learning (RL) was proposed to guide agents
on what actions to take in a specific environment to maximize

Fig. 1. A running example.

a cumulative reward [33], where the environment is generally
modeled as a Markov decision process (MDP) [34]. In recent
years, RL models have been used successfully to solve algo-
rithm problems. For example, Kong et al. [35] explore the RL
methods for three classic combinatorial optimization problems.
Wang et al. [36] propose an effective RL-based algorithm
for the dynamic bipartite matching. Marcus et al. [37] apply
RL for join order enumeration. In this paper, we model the
trajectory simplification problem as an MDP and use a popular
policy gradient method [5]–[7] for solving the problem. To
the best of our knowledge, this is the first deep reinforcement
learning based solution for trajectory simplification.

III. PRELIMINARIES AND PROBLEM STATEMENT

The trace of a moving object such as a vehicle or a user
is usually captured by a trajectory, which corresponds to a
sequence of time-stamped locations called spatio-temporal
points (or simply points). Let T =< p1, p2, ..., pn > be a
trajectory, where pi is in the form of (xi, yi, ti), meaning that
a moving object is at location (xi, yi) at time ti. We denote by
T [i : j] (i ≤ j) the subtrajectory of T , which starts form point
pi and ends at point pj , i.e., T [i : j] =< pi, pi+1, ..., pj >.
We denote by d(pi, pj) (1 ≤ i, j ≤ n) the Euclidean
distance between pi’s location and pj’s location. We define
the size of the trajectory T , denoted by |T |, as the number
of points involved in T , i.e., |T | = n. We denote the line
segment linking location (xi, yi) and location (xi+1, yi+1) by
pipi+1. It is interpreted that during the time period [ti, ti+1]
(1 ≤ i ≤ n − 1), the object moves along the line segment
pipi+1 at a constant speed from one end to the other and the
speed is equal to d(pi,pi+1)

ti+1−ti .

A. Trajectory Simplification and Error Measurements

Any trajectory resulted from T by dropping some points
(that are neither the first nor the last point) corresponds to
a simplified trajectory of T . A simplified trajectory of T ,
denoted by T ′, has the form of < ps1 , ps2 , ..., psm > where
m ≤ n and 1 = s1 < s2 < ... < sm = n. For
example, in Figure 1, T =< p1, p2, ..., p6 > is a trajectory
and T ′ =< p1, p4, p6 > is a simplified trajectory of T .

Consider the time period [tsj , tsj+1 ] (1 ≤ j ≤ m−1). Based
on the simplified trajectory T ′, it is interpreted that the object
moves along segment psjpsj+1

, while based on trajectory T ,
it is interpreted that the object moves along a sequence of
segments formed by a sequence of points psj , psj+1, ..., psj+1

.
In other words, segment psjpsj+1

in T ′ approximates those
segments starting at points psj , psj+1, ..., psj+1−1, namely



psjpsj+1, psj+1psj+2, ..., psj+1−1psj+1
, in T . We say that seg-

ment psjpsj+1 is an anchor segment of each of the points
psj , psj+1, ..., psj+1−1. Note each point in trajectory T except
for pn has exactly one anchor segment in T ′. For example,
in Figure 1, p1p4 approximates a sequence of three segments
p1p2, p2p3, p3p4 and corresponds to the anchor segment of
p1, p2 and p3. As could be noticed, there is a discrepancy
between the interpreted movement based on the simplified
trajectory T ′ and that based on the original trajectory T , and
this discrepancy is measured as the error of T ′ wrt T , which
we denote by ε(T ′).

Quite a few measurements have been proposed for defin-
ing ε(T ′), including (1) synchronized Euclidean distance
(SED) [2]–[4], [9], (2) perpendicular Euclidean distance
(PED) [9]–[11], [19], (3) direction-aware distance (DAD) [12],
[13], [21], [24], and (4) speed-aware distance (SAD) [4]. These
error measurements share the idea that (1) it defines the error
of a segment psjpsj+1

wrt a point pi (sj ≤ i < sj+1) which
takes psjpsj+1 as its anchor segment, which we denote by
ε(psjpsj+1 |pi); (2) it defines the error of the segment psjpsj+1 ,
which we denote by ε(psjpsj+1

), as the maximum among its
errors wrt the points that take it as an anchor segment, i.e.,
ε(psjpsj+1

) = maxsj≤i<sj+1
ε(psjpsj+1

|pi); (3) it then defines
the error of simplified trajectory T ′ as the maximum error of
a segment in T ′, i.e., ε(T ′) = max1≤j≤m−1 ε(psjpsj+1). That
is, these error measurements, including SED, PED, DAD, and
SAD, define ε(T ′) as follows.

ε(T ′) = max
1≤j≤m−1

max
sj≤i<sj+1

ε(psjpsj+1
|pi) (1)

Different measurements use different functions for defining
ε(psjpsj+1

|pi) (1 ≤ j ≤ m− 1, sj ≤ i < sj+1).
• SED defines ε(psjpsj+1 |pi) as the Euclidean distance

between pi’s location, i.e., (xi, yi), and the location at
time ti based on the movement interpreted by T ′, i.e., pi’s
synchronized location based on T ′, which we denote by
p′i. In Figure 1, εSED(p1p4|p2) corresponds to d(p2, p′2).

• PED defines ε(psjpsj+1 |pi) as the Euclidean distance
between pi’s location, i.e., (xi, yi), and the location
on segment psjpsj+1 , that is the closest from (xi, yi),
denoted by p′′i . In Figure 1, εPED(p1p4|p3) corresponds
to d(p3, p′′3).

• DAD defines ε(psjpsj+1
|pi) as the angular difference

between the direction along segment pipi+1 and that
along segment psjpsj+1 . In Figure 1, εDAD(p4p6|p5)
corresponds to the angle between p4p6 and p5p6.

• SAD defines ε(psjpsj+1
|pi) as the difference between the

speed of segment pipi+1 and that of segment psjpsj+1
.

In Figure 1, εSAD(p4p6|p5) corresponds to |d(p4,p6)t6−t4 −
d(p5,p6)
t6−t5 |.

B. Problem Definition

We study the Min-Error problem as defined below.
Problem 1 (Min-Error): Given a trajectory T =<

p1, p2, ..., pn > and a storage budget W , which is an integer,
the Min-Error problem is to find a simplified trajectory

T ′ =< ps1 , ps2 , ..., psm > where m ≤ n and 1 = s1 <
s2 < ... < sm = n such that |T ′| ≤ W and ε(T ′) is
minimized, and ε(T ′) can be defined by any of those existing
error measurements including SED, PED, DAD, and SAD.

The Min-Error problem has two modes, namely the online
mode and the batch mode, for different application scenarios.
Online mode. In the online mode, the trajectory to be simpli-
fied is fed to the system point by point in an online fashion
and those points that have been dropped during the trajectory
simplification process will no longer be accessible. This mode
is commonly used in applications such as remote sensing,
where the sensors collect points from time to time and are
constrained by storage budget, network bandwidth and energy.
Batch mode. In the batch mode, all the points in the trajectory
to be simplified are fed together, and remain accessible during
the simplification process. This mode is usually used at a
server’s side and the purpose is to reduce the storage cost (e.g.,
after the simplification, the original trajectory is discarded)
and/or the query processing cost (e.g., it performs queries on
the simplified trajectory data instead of the original data).

In this paper, we target both the online mode (Section IV)
and the batch mode (Section V).

IV. ALGORITHMS FOR ONLINE MODE

In this section, by Min-Error, we mean the problem in the
online mode unless specified otherwise. In the online mode,
points are inputted one by one in an online fashion, while only
a buffer with size W is available, i.e., at most W points can
be retained throughout the trajectory simplification process.
We adopt an existing strategy [2]–[4] that for the first W
points, we store them in the buffer directly and for each
of the remaining points, since the buffer is already full, we
drop one point in the buffer to release some space and then
store the new point in the buffer. Different from those existing
strategies, which use some human-crafted heuristic values for
deciding which point to drop when the buffer is full, we
aim to achieve a more intelligent method for this decision-
making task. Specifically, we treat the trajectory simplification
problem as a sequential decision making process and model it
as a Markov decision process (MDP) [34] (Section IV-A), use
a policy gradient method [5]–[7] for learning an optimal policy
for the MDP (Section IV-B), and then develop an algorithm
called RLTS, which uses the learned policy for the Min-Error
problem (Section IV-C). In Section IV-D, we present a variant
of RLTS, called RLTS-Skip, which boosts the efficiency of
RLTS via skipping some points from being scanned.

A. Min-Error Modeled as an MDP

We model the Min-Error problem as an MDP, which con-
sists of four components, namely states, actions, transitions,
and rewards as defined below.

1) States: Consider a situation where there are W points
ps1 , ps2 , ..., psW in the buffer and a newly inputted point pi
(i > W ) is to be inserted into the buffer next. The task is to
drop one point from the buffer and then insert the point pi into
the buffer. Conceptually, it is equivalent to the process that we



first append the point pi to the buffer, i.e., the buffer becomes
ps1 , ps2 , ..., psW , psW+1

, where psW+1
= pi, and then we drop

one point psj (2 ≤ j ≤ W ) from the buffer. Note that by the
definition of trajectory simplification, we are not allowed to
drop point ps1 , i.e., p1. An intuitive idea is to drop one of those
points such that the error that is introduced as a consequence
of the dropping operation is small. If we drop the point psj
(2 ≤ j ≤ W ), two existing segments psj−1psj and psjpsj+1

would be destroyed, one new segment psj−1psj+1 would be
created, and other segments are unchanged. Since the error of
a simplified trajectory is determined by those of its segments
and the error of a segment is further determined by its errors
wrt the points in the original trajectory that take the segment as
their anchor segments, the error of the newly created segment
psj−1psj+1 wrt the point psj , i.e., ε(psj−1psj+1 |psj ), captures
the consequence of dropping psj well.

Motivated by this, we define for each point psj (2 ≤ j ≤
W ), a value, denoted by v(psj ), as follows.

v(psj ) := ε(psj−1
psj+1

|psj ) (2)

We note that for DAD and SAD, ε(psj−1
psj+1

|psj ) depends
on segment psjpsj+1. In the online mode, psj+1 may not be
accessible, and thus we use segment psjpsj+1

instead (i.e., we
measure the angular and speed difference between segment
psj−1psj+1 and segment psjpsj+1 ). A lower value means that
once the point is dropped, the introduced error tends to be
smaller and thus it should be dropped with a higher chance.
Then, we define the state of the situation, which we denote by
s, based on the values of the points in the buffer. An immediate
idea is to incorporate the values of all (W − 1) points psj
(2 ≤ j ≤ W ) in the buffer for defining the state. However,
this definition has two issues. First, since W is an input to
the problem and for different problem instances, W is usually
different. With this definition, the model that is defined for
one input W would not be usable for other inputs different
from W . Second, W is typically a moderate to large integer,
e.g., it could be in thousands. With this definition, the state
space would be huge and the model be hard to train.

We propose to define the state s as the set containing k
lowest values, where k (k ≤ W − 1) is hyper-parameter that
could be tuned, instead of the set containing all (W−1) values.
Specifically, we let π denote the permutation of s2, ..., sW such
that v(pπ(1)), v(pπ(2)), ..., v(pπ(W−1)) is a list of the values in
an ascending order. Then, we define state s as follows.

s := {v(pπ(1)), v(pπ(2)), ..., v(pπ(k))} (3)

With this definition, a state is of a fixed size that is indepen-
dent from the problem input. In addition, the state space is
controllable via the parameter k.

2) Actions: Suppose that there are W + 1 points
ps1 , ps2 , ..., psW+1

in the buffer (conceptually) and s =
{v(pπ(1)), v(pπ(2)), ..., v(pπ(k))} is the corresponding state.
Essentially, the task is to pick a point among ps2 , ..., psW
and drop it. An immediate idea is to define (W − 1) actions,
each for a point psj (2 ≤ j ≤ W ), but then there would be
two issues similar to those when we discuss a straightforward

method for defining a state, namely (1) the definition would
be W -dependent and thus it is not flexible and (2) the action
space would be large and thus the model is hard to train. In
fact, it is intuitive to restrict our attention to those points with
small values since dropping one of these points incurs a small
consequent error. Therefore, we focus on those points with
their values maintained in the state, i.e., pπ(1), pπ(2), ..., pπ(k).

With all these, we define an action space containing k
actions, each meaning to drop a point pπ(j) (1 ≤ j ≤ k).
Formally, we define an action, which we denote by a, as
follows.

a := j (1 ≤ j ≤ k) (4)

where the action a = j means that it drops the point pπ(j).
3) Transitions: Suppose a is an action to drop point psj

(2 ≤ j ≤ W ). After the action a is taken, W points are left
in the buffer. When a new point pi, is inserted, we need to
compute a new state, which we denote by s′, i.e., state s′

would be the next state when action a is taken at state s. We
update the state s to state s′ as follows. Recall that a state
is mainly about the values of the points in the buffer, and in
order to compute the state s′, we examine how the points in
the buffer and their corresponding values would have changed
after psj is dropped and a new point pi is inputted.

First, we consider the consequence of dropping psj . After
the point psj is dropped, only two neighboring points, namely
psj−1

and psj+1
, could have their anchor segment changed.

Specifically, point psj−1
’s (if j−1 ≥ 2) anchor segment would

be changed from psj−2psj to psj−2psj+1 and point psj+1 ’s (if
j + 1 ≤ W − 1) anchor segment would be changed from
psjpsj+2

to psj−1
psj+2

. Therefore, the values of the two points
need to be updated, which we do as follows.

v(psj−1) = max{ε(psj−2psj+1 |psj−1), ε(psj−2psj+1 |psj )}
(5)

v(psj+1
) = max{ε(psj−1

psj+2
|psj+1

), ε(psj−1
psj+2

|psj )}
(6)

Here, we include the two errors (i.e., ε(psj−2psj+1 |psj ) and
ε(psj−1psj+2 |psj )) wrt the point psj for updates. The rationale
is as follows. Recall that v(psj−1

) is defined to capture
the consequence of dropping psj−1

. Ideally, v(psj−1
) should

be defined as the error of the segment psj−2
psj+1

, i.e.,
maxp ε(psj−2

psj+1
|p), where p is a point that takes segment

psj−2psj+1 as the anchor segment. In the online mode, among
those points that take segment psj−2psj+1 as the anchor
segment, only psj−1

and psj are accessible when psj is being
dropped. Therefore, we include ε(psj−2

psj+1
|psj ) for defining

v(psj−1
). Similarly, we include ε(psj−1

psj+2
|psj ) for defining

v(psj+1).
Second, we consider the consequence of inserting point pi.

With point pi inserted to the buffer, there would be W +
1 points, which we still denote by ps1 , ps2 , ..., psW+1

. Note
that psW+1

corresponds to pi. The value of psW , which is
previously not defined (since it is the last point in the buffer
before pi is inserted), needs to be defined as follows.

v(psW ) = ε(psW−1
psW+1

|psW ) (7)



The values of all other points are unchanged. Based on these
values, we compute the state s′ in the same way as we compute
the state s (Section IV-A1).

4) Rewards: Consider that we perform an action a at a state
s and then we arrive at a new state s′. We define the reward
associated with this transition from state s to state s′, which
we denote by r, as follows. At state s, we have W points
in the buffer and a new point pi to be inserted. We consider
those points in the buffer, which constitute a trajectory that
corresponds to a simplified trajectory of the trajectory fed so
far, i.e., T [1 : i − 1]. We denote this simplified trajectory by
T ′. Similarly, at state s′, we have a simplified trajectory of
T [1 : i], which we denote by T ′′. We then define the reward
r as follows.

r = ε(T ′)− ε(T ′′) (8)

where ε(T ′) is wrt T [1 : i − 1] and ε(T ′′) is wrt T [1 : i].
The intuition is that if the error of the simplified trajectory
resulted from the action, i.e., ε(T ′′), is smaller, then the reward
is larger. With this definition, it would favor those actions that
lead to simplified trajectories with smaller errors. In fact, it
could be verified that with this reward definition, the goal of
the MDP problem is well aligned with that of the trajectory
simplification problem. To see this, suppose that we go through
a sequence of states s1, s2, ..., sN and correspondingly, we
receive a sequence of rewards r1, r2, ..., rN−1. In the case that
the future rewards are not discounted, we have

N−1∑
t=1

rt =

N−1∑
t=1

(ε(T ′t )−ε(T ′′t )) = ε(T ′1)−ε(T ′′N−1) = −ε(T ′′N−1)

(9)
where T ′t (resp. T ′′t ) is the simplified trajectory at the state
st before (resp. after) the action at is performed. Note that
ε(T ′1) = 0 since at the start state, no points have been dropped
and thus the error is equal to 0, and ε(T ′′N−1) corresponds to
the error of the simplified trajectory of T .

Remarks. We note that for the computation of the reward
r, which involves the computations of the errors of two sim-
plified trajectories, is only required for the learning process.
Therefore, we can use a repository of trajectories for the
learning process, and once a policy has been learned, we use
it for trajectory simplification. In addition, we note that we
can compute ε(T ′t )’s and ε(T ′′t )’s incrementally except for
ε(T ′1) since T ′′t corresponds to T ′t with one point dropped
(1 ≤ t ≤ N ) and T ′t+1 corresponds to T ′′t with one point
inserted (1 ≤ t ≤ N − 1).

B. Policy Learning on the MDP

The core problem of an MDP is to find an optimal policy for
the agent, which corresponds to a function that specifies the
action that the agent should choose at a specific state so as
to maximize the accumulative rewards. We learn the policy
for the MDP via a policy gradient (PNet) method, which
is widely used [5]–[7]. PNet models a stochastic policy as
πθ(a|s), which means the probability of selecting an action a

for a given state s. PNet parameterizes πθ(a|s) using a neural
network as follows.

πθ(a|s) = σ(W s+ b) (10)

where σ denotes the softmax function and θ = {W , b}
denotes the parameters of the neural network. Then, PNet
computes the gradients of some performance measure wrt the
parameters θ as follows.

∇θJ(θ) =
N∑
t=1

Rt −R
σR

∇θ lnπθ(at|st) (11)

where s1, s2, ..., sN is a sequence of states, a1, a2, ..., aN−1
is a sequence of actions by sampling πθ(a|st), Rt denotes
the accumulative reward since action at is taken, R is the
mean of Rt’s, and σR is the standard deviation of Rt’s.
PNet repeatedly updates the parameters θ via gradient ascent
based on the gradients computed in Equation (11) until some
stopping criterion specified by users is satisfied. Note that PNet
corresponds to a variant of the REINFORCE algorithm with
baseline [5]–[7] and the normalization mechanism based on
the mean and standard deviation helps reduce the variance of
the computed gradients in Equation (11).

C. The RLTS Algorithm

Our RLTS algorithm is based on the learned policy for the
MDP that models the Min-Error problem, which is presented
in Algorithm 1. Specifically, it stores the first W points in
the buffer directly (Line 1 - 3). It initializes an index t for a
sequence of states and actions to be traversed (Line 4); Then,
for each of the following points, says, pi, it proceeds as follows
(Line 5). It computes (incrementally if possible) the values of
the points in the buffer except for the first one, i.e., v(psj )
(2 ≤ j ≤ W ), and maintains the values in a min-priority
queue with the ascending permutation denoted by π (Line 6).
It then constructs a state st containing the set of k lowest
values of points (Line 7), and samples an action at based on
the stochastic policy that has been learned (Line 8). Based
on the sampled action at = j, it drops the point with the jth

lowest value, i.e., pπ(j) (Line 9). It then inserts the point pi that
is being processed (Line 10). Finally, it returns a simplified
trajectory T ′ which involves all the W points in the buffer
(Line 13 - 14).

Time complexity. The time complexity of the RLTS algorithm
is O((n − W ) logW ), where n is the number of points in
the input trajectory T and W denotes the storage budget of
the buffer. To see this, the complexity is dominated by the
part of processing the last (n − W ) points (Line 5 - 12
in Algorithm 1), and the time cost of processing one point
consists of (1) that of computing the state whose cost is O(1)
incrementally (Line 6); (2) that of maintaining the min-priority
queue is O(logW ) (Line 6); and (3) that of constructing a
state, sampling an action, dropping a point, inserting a point
and updating the index is O(1) assuming k is a constant (Line
7 - 10). We note that this time complexity is the same as
those of existing algorithms [2]–[4] and all algorithms can



Algorithm 1 The RLTS algorithm
Require: A trajectory T =< p1, p2, ..., pn > which is in-

putted in an online fashion; A buffer with a storage budget
W (W < n);

Ensure: A simplified trajectory T ′ of T with |T ′| ≤W ;
1: for i = 1, 2, ...,W do
2: Store point pi into the buffer;
3: end for
4: t← 1;
5: for i =W + 1,W + 2, ..., n do
6: Compute (incrementally if possible) the values of the

points in the buffer except for the first one, i.e., v(psj )
(2 ≤ j ≤ W ) and maintain the values in a min-priority
queue with the ascending permutation denoted by π;

7: Construct a state st ←
{v(pπ(1)), v(pπ(2)), ..., v(pπ(k))};

8: Sample an action at ∼ πθ(a|s);
9: Drop the point pπ(j) from the buffer where at = j;

10: Insert the point pi into the buffer;
11: t← t+ 1;
12: end for
13: Trajectory T ′ ← the sequence of points in the buffer;
14: Return trajectory T ′;

meet practical requirements as shown in our experiments (e.g.,
the time of processing one point is much less than 1ms on a
moderate machine). Compared with existing algorithms, RLTS
is based on a learned policy but not some human-crafted rules,
and thus it could return simplified trajectories with smaller
errors.

To analyze the time cost of learning the policy, we first
consider the time cost of learning on one trajectory of length n
for one epoch. The time cost should be O((n−W )(n+logW ))
since compared with the RLTS algorithm, the training process
involves two additional costs, namely that for computing the
reward after an action is taken and that for performing the
gradient decent over a neural network. The former has the
cost of O(n) and the latter has a constant cost given that the
neural network we use has a small size that is independent of
the problem size. Let Nt be the number of trajectories and E
be the number of epochs for training the policy. The time cost
of training is O(E ·Nt · (n−W )(n+ logW )).

D. The RLTS-Skip Algorithm

In the RLTS algorithm, each point is inserted to the buffer
for sure after it is scanned. It may then be dropped when some
following points are being scanned. Consequently, when each
point is being scanned, some efforts are spent on deciding
which existing point in the buffer to be dropped by going
through a neural network in RLTS. While this strategy gives
each point a chance to be included in the buffer and thus
exploring a large space of possible simplified trajectories, it
may be too conservative. Consider a scenario where the points
that are scanned most recently constitute a trajectory that
indicates a movement along a straight line with a constant

speed. In this scenario, we have much confidence to drop a
certain number of points in a row without including them one
by one to the buffer and then dropping some of them at later
stages. This would help save the efforts for deciding and taking
actions when scanning these points and at the same time, the
effectiveness should not be affected much.

Motivated by this, we propose to augment the MDP that is
defined in Section IV-A by introducing J additional actions
when scanning a point pi, namely (1) dropping pi and con-
tinuing to scan pi+1, (2) dropping pi and pi+1 and continuing
to scan pi+2, ..., and (J) dropping pi, pi+1, ..., and pi+J−1
and continuing to scan pi+J . Here, J is a hyper-parameter,
which could be tuned. These actions essentially mean (1)
skipping 1 point, (2) skipping 2 points, ..., and (J) skipping J
points during the process of scanning the points of a trajectory
sequentially. As a result, the augmented MDP involves (k+J)
actions, namely the k actions of the original MDP as defined
in Section IV-A2 and the J actions as newly introduced in
this section. Note that these (k+J) actions are exclusive and
at each state, only one of them could be taken. For an action
of dropping a point, the reward is defined the same as in the
online mode. For an action of skipping j points, the reward is
still defined by Equation (8), but with T ′′ changed to be the
points stored in the buffer plus pi+j , which corresponds to a
simplified trajectory of T [1 : i+j].All other components of the
original MDP remain unchanged. We call the reinforcement
learning algorithm based on this augmented MDP as RLTS-
Skip. We note that when J is set to 0, RLTS-Skip reduces to
RLTS.

The RLTS-Skip algorithm is illustrated in Figure 2 with the
inputted data trajectory shown at the left side and W = 4. It
first stores 4 points p1, p2, p3 and p4 in the buffer. It then
scans point p5, observes the first state s1 and takes the action
of dropping the point p3. It then scans point p6, updates the
values of two neighboring points of p3, namely p2 and p4,
and computes the value of the newly inserted point p5. It then
observes the second state s2 and takes the action of skipping
the next 2 points, i.e., p6 and p7. It then scans p8 and updates
the value of p5. It observes the third state s3, takes an action
of dropping p2, and then terminates. At the end, it returns a
simplified trajectory T ′ =< p1, p4, p5, p8 >, which has the
PED error 0.693.

As could be verified, RLTS-Skip has the same time com-
plexity as RLTS. But in practice, RLTS-Skip should have
better efficiency than RLTS for two reasons: (1) At each state,
RLTS-Skip can take either a “dropping” action (among the k
actions) or a “skipping” action (among the J actions), RLTS
can only take a “dropping” action, and the cost incurred by a
“skipping” action is smaller than that by a “dropping” action
(since for a “dropping” action, the values of three points
need to be updated (Equation (5), (6), and (7)) while for a
“skipping” action, only the value of one point need to be
updated (Equation (7)); and (2) For RLTS-Skip, for those
points that are skipped, the efforts for deciding and taking
an action are saved.
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Initial Store < p1, p2, p3, p4 > into the buffer with the initial reward 0.0
Point State Action Buffer Reward Accum Reward
p5 s1 = {v(p2) = 0.243, v(p3) = 0.354, v(p4) = 1.0} Drop p3 < p1, p2, p4, p5 > -0.354 -0.354
p6 s2 = {v(p2) = 0.693, v(p5) = 0.728, v(p4) = 1.265} Skip p6 and p7 < p1, p2, p4, p5 > -0.278 -0.632
p7 - - - - -
p8 s3 = {v(p2) = 0.693, v(p5) = 1.0, v(p4) = 1.265} Drop p2 < p1, p4, p5, p8 > -0.061 -0.693

Output Return T ′ =< p1, p4, p5, p8 > with ε(T ′) = 0.693

Fig. 2. Illustration of the RLTS-Skip algorithm with PED.

V. ALGORITHMS FOR BATCH MODE

In the batch mode, we have more data access than in the
online mode. Specifically, we have access to all points of a
trajectory during the course of trajectory simplification in the
batch mode, while in the online mode, we can only access
those points that are stored in the buffer. With the increased
data access, we have more options of defining the states of the
MDP. In the following, we investigate three state definitions,
which capture different portions of the points of a trajectory,
and correspondingly develop three different sets of algorithms,
namely (1) RLTS and RLTS-Skip, (2) RLTS+ and RLTS-
Skip+, and (3) RLTS++ and RLTS-Skip++.
(1) RLTS and RLTS-Skip. The RLTS and RLTS-Skip algo-
rithms that are designed for the online mode can immediately
carry over for the batch mode. Same as the case of online
mode, the states of the MDP underlying RLTS and RLTS-
Skip are defined based on those points that are stored in the
buffer only. The time complexity of RLTS and RLTS-Skip is
O((n−W ) logW ).
(2) RLTS+ and RLTS-Skip+. In RLTS, a state is defined
based on the values of the points in the buffer and the value
of a point is defined as the error of its anchor segment wrt the
point only. That is, the errors of the point’s anchor segment
wrt other points that take the segment as an anchor segment
are ignored since those points have been dropped already and
are no longer accessible in the online mode. In the batch
mode, this is not the case. In fact, we can make use of these
errors for defining the value of a point so as to capture richer
information. Specifically, we define the value of a point psj
(2 ≤ j ≤ W ) in the buffer as the maximum error of the
psj ’s anchor segment wrt a point that takes the segment as its
anchor segment as follows.

v(psj ) := max
sj−1≤i<sj+1

ε(psj−1psj+1 |pi) (12)

With this new definition of the value of a point, we would have
correspondingly a new MDP, a new learned policy and a new
algorithm for trajectory simplification. We call this algorithm
RLTS+. Essentially, RLTS+ is an adapted version of RLTS
with the states enhanced with additional information of those
points that have been dropped before. The time complexity
of RLTS+ is O((n −W )(n′ + logW )), where n′ is the cost
of computing the value of a point and is bounded by n (in
practice, n′ ≤ n).

Similarly, we refine the state definition of the MDP for
RLTS-Skip by (1) using the new definition of the value of
a point (Equation (12)); and (2) appending J values to the
original k values, each corresponding to the error incurred by
dropping j points pi, ..., pi+j−1 for 1 ≤ j ≤ J , when scanning

point pi. We then develop an algorithm based on the MDP with
the refined state. We call the resulting algorithm RLTS-Skip+.
The time complexity of RLTS-Skip+ is the same as RLTS+.

(3) RLTS++ and RLTS-Skip++. In both RLTS and RLTS+,
a buffer of a fixed size (i.e., W ) is maintained and only those
points stored in the buffer are considered as candidates to drop.
This is necessary in the online mode due to the restricted
data access. In the batch mode, all points can be accessed
throughout the course of trajectory simplification. Therefore,
an alternative design is to use a buffer of a variable size.
Specifically, we put all the points in the buffer at the beginning
and each time we drop one point from the buffer until only
W points remain in the buffer. Based on this design, we can
define the states in the same way as we do for RLTS+ except
that the buffer is of a variable size. Correspondingly, we can
obtain a MDP, a learned policy and a trajectory simplification
algorithm. We call the resulting algorithm RLTS++. Similarly,
we can replace the buffer of RLTS-Skip+ with one of a
variable size and to obtain a new algorithm, which we call
RLTS-Skip++. For RLTS-Skip++, all points are stored in the
buffer at the beginning, an action of skipping j points means
dropping j points.

RLTS++ and RLTS-Skip++ come with an increased cost
of computing a state since it needs to maintain the k lowest
values among O(n) values instead of W values as RLTS or
RLTS+ does. As a result, the time complexity of RLTS++ and
RLTS-Skip++ becomes O((n−W )(n′ + log n)), where n′ is
the cost of computing the value of a point and is bounded by
n (in practice, n′ ≤ n).

Comparisons and Analysis. From RLTS, to RLTS+, to
RLTS++, more information is captured for defining the states,
and correspondingly, the resulting algorithms for trajectory
simplification have more time costs, i.e., from O((n −
W ) logW ), to O((n−W )(n′+logW )), to O((n−W )(n′+
log n)). This holds for RLTS-Skip, RLTS-Skip+, and RLTS-
Skip++ as well. As will be investigated in Section VI-A,
these algorithms provide different trade-offs of effectiveness
and efficiency. Among RLTS, RLTS+ and RLTS++, RLTS++
has the best effectiveness and RLTS has the best efficiency.
Among RLTS-Skip, RLTS-Skip+ and RLTS-Skip++, RLTS-
Skip++ has the best effectiveness and RLTS-Skip has the
best efficiency. As can be verified, the time complexity of
training for RLTS, RLTS+, RLTS-Skip, and RLTS-Skip+ is
O(E · Nt · (n −W )(n + logW )) and that for RLTS++ and
RLTS-Skip++ is O(E · Nt · (n −W )(n + log n)), where E
is the number of epochs and Nt is the number of trajectories
used for training.
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Fig. 3. Comparison with Bellman (Batch mode, Geolife).

TABLE I
DATASET STATISTICS.

Statistics Geolife T-Drive Truck
# of trajectories 17,621 10,359 10,110
Total # of points 24,876,978 17,740,902 10,059,685

Ave. # of points per trajectory 1,412 1,713 995
Sampling rate 1s ∼ 5s 177s 3s ∼ 60s

Average distance 9.96m 623m 82.74m

VI. EXPERIMENTS

A. Experimental Setup

Dataset. Our experiments are conducted on three real-world
trajectory datasets, namely Geolife, T-Drive and Trucks. Geo-
life1 records the outdoor trajectories of 182 users for a period
of five years. T-Drive 2 tracks the trajectories of 10,357 taxis
in Beijing, and Truck 3 records the GPS trajectories of 10,368
trucks in China during a period from March to October, 2015.
The three datasets are widely used in evaluating trajectory
simplification [15], [21], [24] including the recent dedicated
evaluation work [1] and the detailed statistics are summarized
in Table I.

Algorithms for Comparison. We review the trajectory sim-
plification literature thoroughly and identify seven methods
for comparison, including (1) STTrace [2], (2) SQUISH [3]
and (3) SQUISH-E [4] for the online mode and (4) Bell-
man [19], (5) Top-Down [38], (6) Bottom-Up [20], [24], and
(7) Span-Search [21] for the batch mode. We cross check
these algorithms against those covered in a recent survey [1]
on trajectory simplification so that all existing methods that
are proposed for the Min-Error problem are included for
comparison. Note that we do not compare with the adaptions
of the algorithms that are designed for the dual problem of
Min-Error (via binary search) since these adapted algorithms
would have the time complexity at least O(n2 log n), e.g., for
DAD, the time complexity is O(n2C log n), where C < n,
which are clearly higher than those of RLTS and RLTS-Skip
and not scalable on large datasets.

Parameter Setting and Policy Learning. The neural network
used in the RLTS and RLTS-Skip (or RLTS+ and RLTS-Skip+)
methods involves one input layer, one hidden layer and one
output layer, where the hidden layer involves 20 neurons and

1http://research.microsoft.com/en-us/downloads/
b16d359d-d164-469e-9fd4-daa38f2b2e13/

2http://research.microsoft.com/apps/pubs/?id=152883
3http://mashuai.buaa.edu.cn/traj.html

uses the tanh function as the activation function. In order to
avoid the data scale issues, batch normalization provided by
tensorflow is employed before the activation. For RLTS (or
RLTS+), the output layer involves k neurons and k is set as 3
by default. For RLTS-Skip (or RLTS-Skip+), the output layer
involves (k + J) neurons and k and J are set as 3 and 2,
respectively.

We study the effects of these two hyper-parameters in
Section VI-B. We randomly sample 1,000 trajectories from
a training dataset, and for each trajectory, we generate 10
episodes for policy learning. Since each trajectory involves
around 1,000 points, there would be about 10 million transition
steps in the learning process. In addition, we use the Adam
stochastic gradient descent with the learning rate of 0.001
based on empirical findings. For the reward discount factor,
we tried several settings, and since the results are similar, we
set it as 0.99. We take the policy, which gives the maximum
reward per episode and use it for trajectory simplification. For
the online mode, we sample an action with the probability
outputted by the softmax function at each state, and for the
batch mode, we take the action with the maximum probability
based on empirical findings. The units of SED, PED, DAD,
and SAD are 10m, 10m, 1 radian and 10m/s, respectively.
Evaluation Platform. All the methods are implemented in
Python 3.6. The implementation of RLTS and RLTS-Skip
(or RLTS+ and RLTS-Skip+) is based on tensorflow 1.8.0.
The experiments are conducted on a machine with Intel(R)
Xeon(R) CPU E5-1620 v2 @3.70GHz 16.0GB RAM and one
Nvidia GeForce GTX 1070 GPU. The codes and datasets
can be downloaded via the link https://www.dropbox.com/sh/
xaldzowli8pc4v6/AAA7ZMxNJAFtbrQJmN3DSInTa?dl=0.

B. Experimental Results

(1) Comparison with the exact algorithm Bellman (Batch
mode). Since Bellman has a cubic time complexity and is
slow, we compare it with RLTS+ and RLTS-Skip+ on some
small datasets only, for which we randomly select a set of
100 trajectories, each with around 300 points from Geolife.
We observe that the simplification error of RLTS+ and RLTS-
Skip+ is very close to the exact algorithm Bellman for the four
measurements; however, RLTS+ and RLTS-Skip+ run faster
than Bellman by around three orders of magnitude. The results
on the other datasets are qualitatively similar and thus omitted.
(2) Comparison among variants (batch mode). We ran-
domly sample 1,000 trajectories from Geolife each with 5,000

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://research.microsoft.com/apps/pubs/?id=152883
http://mashuai.buaa.edu.cn/traj.html
https://www.dropbox.com/sh/xaldzowli8pc4v6/AAA7ZMxNJAFtbrQJmN3DSInTa?dl=0
https://www.dropbox.com/sh/xaldzowli8pc4v6/AAA7ZMxNJAFtbrQJmN3DSInTa?dl=0
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Fig. 5. Effectiveness evaluation with varying W ((a)-(d): Online mode, (e)-(h): Batch mode, Geolife).

points, run the algorithms, and report the average SED error
and running time. The results are shown in Figure 4. We
observe that the effectiveness increases and the efficiency
drops from RLTS, to RLTS+, to RLTS++. This is because from
RLTS, to RLTS+, to RLTS++, more information is captured
for defining the states, and correspondingly the MDP is more
powerful yet takes more time to run. Besides, only RLTS+
dominates the best existing algorithm, i.e., Bottom-UP, in
terms of both effectiveness and efficiency. Therefore, in the
following experiments, we focus on RLTS+ and RLTS-Skip+
for the batch mode.

(3) Effectiveness evaluation (comparison with existing
approximate algorithms). We randomly sample 1,000 tra-
jectories T from a dataset and vary the storage budget W
from 0.1 × |T | to 0.5 × |T | by following [21]. Figure 5
show the results for both online and batch modes on the
Geolife dataset. Overall, the results clearly show that RLTS
(or RLTS+) consistently outperforms existing algorithms under
all error measurements for both online and batch modes and
on all datasets. For RLTS-Skip (or RLTS-Skip+), it beats
all baselines for the online mode, and provides comparable
performance in the batch mode. We next discuss the results
in more details. (1) The online mode: RLTS consistently

outperform all the baselines. For example, at W = 0.3,
RLTS outperforms SQUISH-E (the second best under SED
and PED) by 37% (resp. 35% and 30%) for SED on Geolife
(resp. T-Drive and Truck); it outperforms STTrace (the second
best under DAD and SAD) by 11% (resp. 1% and 12%)
for DAD on Geolife (resp. T-Drive and Truck). In addition,
the effectiveness of RLTS-Skip is slightly worse than RLTS,
but still better than that of the baselines due to its data-
driven nature. (2) The batch mode: Again, RLTS+ consistently
outperforms all the baselines. For example, at W = 0.3,
RLTS+ outperforms Bottom-Up by 19% (resp. 5% and 24%)
for SED on Geolife (resp. T-Drive and Truck), Top-Down by
68% (resp. 53% and 52%) for PED on Geolife (resp. T-Drive
and Truck), and Span-Search by 49% (resp. 2% and 43%) for
DAD on Geolife (resp. T-Drive and Truck). Similarly, RLTS-
Skip+ has its effectiveness slightly worse than RLTS+ in the
batch mode (due to a smaller space of simplified trajectories
explored).

(4) Effectiveness evaluation (with and without the learned
policy). We conduct an ablation experiment by replacing the
policy with one that greedily drops a point with the smallest
value in the buffer (called RLTS-Greedy). Table II reports the
average error on 1,000 randomly sampled trajectories (W is
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Fig. 6. Effectiveness evaluation with varying W ((a)-(d): Online mode, (e)-(h): Batch mode, T-Drive).
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Fig. 7. Effectiveness evaluation with varying W ((a)-(d): Online mode, (e)-(h): Batch mode, Truck).

fixed at 0.1|T |) under the SED error. In the online mode, the
learned policy contributes significantly to the effectiveness,
e.g., the mean error of RLTS-Greedy is around 2 times
larger than that of RLTS on Geolife. In the batch mode, the
improvement due to the learned policy is not as much as in
the online mode, which could be possibly explained by that
in the batch mode, more information is available for making
decisions and a simple greedy heuristic based on our defined
state information works quite well.

(5) Effectiveness evaluation (varying the parameter k).
Table III shows the results for the online and batch modes
on Geolife under the SED error. As expected, as k grows,
the running time becomes larger. We also observe that the

accuracy becomes better as k grows from 2 to 3, and drops
slightly for the batch mode when k becomes 5. This is
probably because a big k would make it difficult to train the
model while a small k would miss some potential candidate
points. This is in line with our intuition. Therefore, we set the
k at 3 in our experiments because it strikes a good balance
between effectiveness and efficiency.

(6) Effectiveness evaluation (varying the parameter J). We
report the effects of J , i.e., the maximum number of points that
could be skipped, for both online and batch modes on Geolife
under the SED error in Table IV. As expected, we observe
that the general trend of RLTS-Skip is that the effectiveness



TABLE II
IMPACTS OF THE LEARNED POLICY (GEOLIFE).

Dataset Geolife T-Drive Truck
Simplification Mode Online Batch Online Batch Online Batch
Error Measurement SED PED SED PED SED PED SED PED SED PED SED PED

RLTS(+) 4.603 2.611 3.467 1.667 51.439 51.445 39.083 19.593 236.167 101.268 173.371 40.465
RLTS(+)-Greedy 8.434 3.301 3.538 1.765 71.977 104.019 39.133 19.672 372.077 149.229 173.527 40.730

TABLE III
IMPACTS OF THE PARAMETER k (GEOLIFE).

Parameter k = 2 k = 3 k = 4 k = 5
Mode Online Batch Online Batch Online Batch Online Batch

Measurement SED PED SED PED SED PED SED PED SED PED SED PED SED PED SED PED
Error 4.802 2.743 3.808 1.962 4.603 2.611 3.467 1.667 4.779 2.655 4.018 1.995 4.759 2.769 4.230 2.182

Time (ms) 0.576 0.456 0.688 0.547 0.580 0.461 0.692 0.551 0.585 0.467 0.697 0.555 0.590 0.471 0.702 0.560

TABLE IV
IMPACTS OF SKIPPING STEPS J FOR RLTS-SKIP (GEOLIFE).

Mode Online Batch
Skipping Steps J = 0 J = 1 J = 2 J = 3 J = 4 J = 0 J = 1 J = 2 J = 3 J = 4

SED Error 4.603 5.367 5.761 6.565 9.482 3.467 3.640 3.716 4.329 4.557
Time (ms) 0.580 0.525 0.508 0.493 0.462 0.692 0.652 0.628 0.610 0.580

Skipped Pts 0% 2.7% 3.8% 5.2% 14.9% 0% 0.6% 1.9% 2.8% 3.4%
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Fig. 8. Efficiency evaluation (varying |T |) on Truck.
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Fig. 9. Scalability test on Truck.

degrades but the efficiency improves as J increases. This is
because with a larger J , RLTS-Skip would tend to skip more
points, which would lead to (1) the space of possible simplified
trajectories would be smaller and (2) the efforts of deciding
and taking actions would be less. We also report the portion of
skipped points in the 1000 random trajectories. We choose J =
2 as the default setting for other experiments because it gives
a reasonable trade-off between effectiveness and efficiency.

(7) Efficiency evaluation (varying the trajectory length |T |).
We follow [1], [21] by varying |T | from 10,000 to 50,000.
For each setting, we randomly select 100 trajectories with
the size around the setting from Truck. We fix W at 0.1|T |.
Figure 8 shows the results for both online and batch modes
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Fig. 10. Efficiency evaluation (varying W ) on Truck.

under SED. In the online mode, we show the average running
time per point because the processing time of a single point is
important for an online scenario. In addition, the sampling rate
(3s) of the Truck dataset is shown with a dotted line in the
figure for reference. We observe that RLTS and RLTS-Skip
are slightly slower than the three baseline algorithms though
all of them have the same time complexity. This is because
learning-based algorithms employ the learning models to make
the decision (i.e., dropping or skipping) while the other three
algorithms use a simple comparison operation for the same
task. In addition, RLTS-Skip runs faster than RLTS since the
time cost of constructing states and choosing actions are saved
for those points that have been skipped. Overall, RLTS and
RLTS-Skip are fast enough (very close to other algorithms)
and far meets the practical needs, e.g., for a trajectory with
about 10,000 points, they take less than 0.15ms per point,
which is 20,000 times faster than the sampling rate (3s). In
the batch mode, both RLTS+ and RLTS-Skip+ are faster than
Top-Down and Bottom-Up, and the gaps of efficiency are
aligned with the time complexities. We omit the running time
of Span-Search because it has been shown to be slower than
Top-Down in the existing studies [1], [21]. The results on the
other datasets under other error measurements are qualitatively
similar as those reported in Figure 8 and are omitted.
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Fig. 11. Case Study ((a)-(d): Online mode, (e)-(h): Batch mode, Geolife).
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Fig. 12. Training cost on Geolife.

TABLE V
TRAINING TIME ON GEOLIFE (HOURS).

Measurement SED PED DAD SAD
Mode Online Batch Online Batch Online Batch Online Batch

RLTS(+) 10.3 11.1 9.7 11.5 9.3 10.1 14.1 15.2
RLTS-Skip(+) 9.7 10.7 7.3 7.6 6.5 6.8 12.3 13.9

(7) Scalability test. Figure 9 shows the scalability test results
on some long trajectories on Truck. We vary trajectory size
from around 50,000 to 400,000 and report the average running
time per trajectory. According to the results, we observe our
RL-based methods are scalable. e.g., for the longest trajectory
with about 383,000 points, RLTS-Skip+ takes 2,843s while
Bottom-Up and Top-Down take 4,952s, 98,427s, respectively.

(9) Efficiency evaluation (varying the budget size W ). We
vary W from 0.1|T | to 0.5|T | on Truck and fix |T | at 40,000
using SED as the error measurement. Figure 10 shows the
result for both the online and batch modes. Similarly, in the
online mode, RLTS and RLTS-Skip are a bit slower than
SQUISH, SQUISH-E and STTrace, but run reasonably fast.
For example, they take less than 1ms per point point for a
trajectory with 40,000 points. The running times of all the
methods slightly increase with W . In the batch mode, both
RLTS+ and RLTS-Skip+ run faster than Top-Down by around
two orders of magnitude. They also run faster than Bottom-Up,
and the gap reduces as W increases since they take O(logW )

time to construct states while Bottom-Up takes O(log n) time
to decide which segments to merge.

(10) Case study. In Figure 11, blue solid lines indicate a
raw trajectory and red dashed lines indicate its simplified
trajectories by different algorithms in the online mode. We
label the SED errors with black dashed lines. The results
clearly show that our RL-based methods return better results
than baselines. For example, the SED of RLTS (ε = 2.851) is
around half of those of SQUISH and SQUISH-E (ε = 5.987),
and STTrace (ε = 5.866).

(11) Training time. The training times of RLTS and RLTS-
Skip (or RLTS+ and RLTS-Skip+ for batch mode) under
different error measurements on Geolife are shown in Table V.
It normally takes several hours to train a satisfactory RL
model. The reported training times of RLTS-Skip are smaller
than those of RLTS. This is because we use the same training
samples and epochs for training both algorithms and RLTS-
Skip runs faster. Further, we study how the number of training
samples affects the model performance. We randomly sample
5 training sets from Geolife, which include 500, 1,000, 1,500,
2,000, 2,500 trajectories, respectively. For each training set,
we report its training cost and the corresponding effective-
ness with the default setup in Section VI-A. The results
are shown in Figure 12. We observe that the effectiveness
slightly improves with the number of training samples and the



corresponding training cost increases almost linearly. We use
the learned policy based on the 1,000 trajectories for other
experiments because it gives a reasonable trade-off between
effectiveness and training cost.

Summary on the experimental results. Regarding the ef-
fectiveness, our RL-based methods are better than existing
approximate algorithms consistently on both online and batch
modes, for all four error measurements, on all three datasets.
Regarding the efficiency, our RL-based methods both run
comparably fast as other algorithms for the online mode and
consistently faster for the batch mode.

VII. CONCLUSION

In this paper, we study the trajectory simplification prob-
lem in both online and batch modes. We propose a rein-
forcement learning (RL)-based method called RLTS for both
modes. Compared with existing algorithms, which are mainly
heuristic-based, our RLTS method is data-driven and can adapt
to different dynamics of the underlying points. We conduct
extensive experiments, which show that RLTS computes sim-
plified trajectories with consistently lower errors and runs
comparably fast in the online mode and faster in the batch
mode, compared with existing algorithms. One interesting
direction for future research is to explore how to choose
the error measurement (e.g., SED, PED, etc.) adaptively for
different application scenarios.
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