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ABSTRACT
The prosperity of crowdsourcing geospatial data provides increas-
ing opportunities to understand our cities. In particular, Open-
StreetMap (OSM) has become a prominent vault of geospatial data
on the Web. In this context, learning urban region representations
from OSM data, which is unexplored in previous work, could be
profitable for various downstream tasks. In this work, we utilize
OSM buildings (footprints) complemented with points of interest
(POIs) to learn region representations, as buildings’ shapes, spa-
tial distributions, and properties have tight linkages to different
urban functions. However, appealing as it seems, urban buildings
often exhibit complex patterns to form dense or sparse areas, which
brings significant challenges for unsupervised feature extraction.
To address the challenges, we propose RegionDCL1, an unsuper-
vised framework to deeply mine urban buildings. In a nutshell, we
leverage random points generated by Poisson Disk Sampling to
tackle data-sparse areas and utilize triplet loss with a novel adaptive
margin to preserve inter-region correlations. Furthermore, we train
our model with group-level and region-level contrastive learning,
making it adaptive to varying region partitions. Extensive experi-
ments in two global cities demonstrate that RegionDCL consistently
outperforms the state-of-the-art counterparts across different re-
gion partitions, and outputs effective representations for inferring
urban land use and population density.

CCS CONCEPTS
• Information systems → Data mining; Geographic information
systems; • Computing methodologies→ Knowledge representa-
tion and reasoning.

KEYWORDS
Geospatial data mining, OpenStreetMap, urban regions, represen-
tation learning

1Code released at https://github.com/LightChaser666/RegionDCL.
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1 INTRODUCTION
Urbanization has become a defining feature of modern society, and
understanding and characterizing our cities is essential for effective
urban planning and management [6]. Traditional approaches for
investigating the properties of cities mainly relied on field survey,
which is often labor-intensive and time-consuming [22]. With the
proliferation of urban big data, urban computing has emerged as a
powerful tool for addressing critical urban issues and facilitating
valuable urban applications [47]. By applying machine learning
techniques to various types of data, such as vehicle trajectories
and points of interest (POIs), we could gain new insights and de-
velop innovative solutions to urban problems. However, while these
approaches have yielded promising results, they often focus on a
single task (e.g., economic growth prediction [13], air quality anal-
ysis [48]) and rely on domain expertise for supervision.

Recently, urban region representation learning emerges as a
popular practice in urban computing, which transforms urban re-
gions into vector representations (embeddings) that can be used
for various downstream tasks such as identifying land use, esti-
mating population, as well as predicting air quality and economic
growth [32]. This type of approach has two key characteristics,
unsupervised (or self-supervised) learning and multitasking. The
unsupervised setting reduces the dependence on large amounts of
labeled data, and the task-agnostic paradigm is well-suited to urban
problems, as many socioeconomic factors, such as land use infer-
ence and population density estimation, share commonalities [18].
This makes it desirable to learn general-purpose region embeddings
to facilitate urban sensing applications.

An important consideration in urban region representation learn-
ing is the types of input data. In this regard, several commonly-used
data sources include human mobility data [9, 14, 31, 33, 38, 44, 46],
POIs[9, 14, 31, 32, 38, 44], street view images [32], and geo-tagged
social media [42]. Among them, human mobility data has been
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Residential Areas Industrial Areas

Figure 1: Typical residential and industrial areas in Singapore.
Buildings in industrial areas are mainly rectangles and ar-
ranged in grids, while those in residential areas have twisted
shapes and organic arrangements. The similarity in building
shapes and arrangements can be observed in regions with
the same land use, regardless of their spatial distances.

extensively investigated [9, 14, 31, 33, 38, 44, 46], and various tech-
niques are developed for building mobility graphs and understand-
ing human transitions between regions. However, human mobility
data requires both devices to collect and is only feasible for lim-
ited areas and user groups. This makes it difficult to apply these
methods to cities where human mobility data is not available. In
addition, other data sources like street-view images entail quality,
accessibility, and coverage issues for urban sensing [24]. Therefore,
it is important to explore alternative data sources that have better
availability in a wider range of cities.

The increasing availability of open geospatial data offers a promis-
ing solution. OpenStreetMap (OSM) is a representative crowdsourc-
ing platform that provides increasingly comprehensive coverage of
geospatial data, including building footprints, POIs, and road net-
works. Buildings, in particular, are readily accessible from OSM and
contain valuable geometric and semantic information, especially in
urban areas [1]. Utilizing such data offers two main advantages: (1)
Data Effectiveness, as buildings are the main components of urban
regions, and modern building design often follows the principle of
"form follows function", meaning that building shapes and their
spatial distributions are indicative of their intended use [8], e.g.
commercial vs residential buildings (See Fig. 1). Furthermore, build-
ings are tightly linked to other factors such as population density
[36, 45], and (2) Data Availability, as buildings are readily available
from OSM. Therefore, in this study, we propose to utilize OSM
building data (footprints) for urban region representation learning.

Despite its potentials, utilizing buildings for urban region repre-
sentation learning poses several prominent challenges:
• Representation Learning. Buildings come with complex polyg-
onal geometries, which cannot be readily encoded by previous
point-oriented methods [34]. Additionally, it is crucial to cap-
ture the spatial distribution and intercorrelations of buildings,
which are essential in characterizing building groups [26], but
often overlooked in previous work. Furthermore, while many
previous studies focus on preserving inter-region spatial prox-
imity [14, 31, 32], we posit that maintaining building similarities

across diverse regions is also crucial. As observed in Fig 1, build-
ings located in distant regions can exhibit similar shapes and
spatial distributions. Therefore, it is important to preserve the
similarities of such patterns in the learned embeddings.

• Data-sparse Areas. Urban buildings are often unevenly dis-
tributed in a city, resulting in many data-sparse (i.e., empty or
unmapped) areas. Previous work generally treats regions as "bags
of objects", neglecting the intrinsic trait of regions, which con-
tain both developed and empty (or unmapped) parts. This lack
of representation of empty areas downgrades the discrimination
power of the learned embeddings, e.g, a vastly unutilized region
and a small residential area both having a few buildings would
likely be mistakenly regarded as similar. However, representing
empty parts of regions is a non-trivial task, as these areas often
possess various shapes and their characteristics are often corre-
lated with surrounding buildings, which cannot be captured by
traditional hand-crafted features (e.g., average distance between
nearest neighbors [5]).

In addition, previous work has been highly dependent on one
specific region partition chosen for the task at hand. However, in
real-world scenarios, different downstream tasks may require vary-
ing region partitions. For example, U.S. demographics estimation
is commonly done in Census Tracts [38, 44], while traffic crash
estimation may require Traffic Analysis Zones [23]. Empirically,
models designed for one specific region partition may not perform
well when applied to a different partition, as demonstrated by the
experiment results in Section 5.5.1. The inability to adapt to varying
region partitions diminishes the generality of derived embeddings.
Thus, it is desirable to design a training strategy that is suitable for
different region partitions.

To address the aforementioned challenges, we proposeRegionDCL,
a Dual Contrastive Learning framework that leverages OSM data
to derive general urban region representations for various down-
stream tasks. To tackle the challenges in representation learning, we
employ Transformer Encoder with distance-biased self-attention
to model the complex spatial distribution and intercorrelations of
buildings. In addition, we formulate a triplet loss with an adaptive
margin to preserve spatial proximity and building similarities si-
multaneously. To handle data-sparse areas, we use Poisson Disk
Sampling [2] to generate random points that explicitly mark the
existence of empty spaces and interact with surrounding objects,
thus significantly enhancing the embedding quality for data-sparse
regions. Furthermore, we use OSM road networks to partition the
city into small building groups as intermediate units for varying
region partitions, and perform a dual contrastive learning strategy
at both the levels of building groups and regions. This improves
our model’s adaptability to different partition schemes and reduces
the need for re-training, ultimately enhancing the generalizability
of derived embeddings.

In summary, the key contributions of this paper are as follows:

• We propose a novel framework RegionDCL that generates mean-
ingful and effective urban region representations for various
downstream tasks using OSM building footprints and POIs pub-
licly available. This is the first work to utilize building footprints
for region representation learning, to the best of our knowledge.
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• We propose to annotate data-sparse (or even empty) areas with
random points generated by Poisson Disk Sampling, improv-
ing the representation quality for data-sparse regions. We also
propose a novel dual contrastive learning that preserves spatial
proximity and building group similarity, improving the model’s
adaptability to multiple downstream region partitions.

• Extensive experiments on Singapore and New York City data
demonstrate the superiority of the proposed framework for land
use inference and population density estimation tasks. Case stud-
ies and visualization results further show RegionDCL’s effective-
ness in data-sparse areas and its strong adaptability to variant
region partitions.

2 RELATEDWORK
The field of urban region analysis has predominantly utilized task-
specific supervised learning. Yuan et al. [40] utilized human mo-
bility and POIs to identify urban functional zones. Naik et al. [19]
predicted streetscape safety through street view images. Zheng et
al. [48] estimated air quality through traffic and meteorological
data. Yang et al. [36] encoded urban buildings for functional region
classification. However, these methods are limited by their need for
domain expertise and their inability to adapt to new tasks.

Several studies have attempted to overcome these limitations by
focusing on learning general urban region representations in an
unsupervised manner. For example, Zhai et al. [41] learn region rep-
resentations by modeling the co-occurence of POI categories. Niu
and Silva. [20] further take the spatial proximity of nearest neigh-
bors into account. However, these methods focus on POI semantic
preservation and are limited in modeling spatial distributions.

Recently, Wang and Li [31] proposed a mobility graph with
regions as nodes and trajectories as edges, thereby uncovering the
inter-region correlations. Fu et al. [9] further integrated POIs into
the mobility graph with graph auto-encoders. Zhang et al. [46]
integrated POIs and Check-in data into the mobility graph with
collective adversarial training. Zhang et al. [43] utilize POIs and
mobility data to construct different region views for contrastive
learning. Porter et al. [14] combined satellite images, POIs, and the
mobility graph via Graph Convolutional Networks. Zhang et al.
[44] introduced an attention mechanism to capture cross-modality
feature associations in the mobility graph. Wu et al. [33] fused per-
hour mobility graphs in different periods to enhance urban region
representations.

While these methods achieved promising results, they rely heav-
ily on human mobility data to model inter-region associations,
which can be difficult to access in practice. Additionally, they do
not account for information from data-sparse areas and are confined
to specific region partitions. Our proposed method, RegionDCL,
addresses these limitations by leveraging widely-available OSM
data and preserving building similarities and spatial distributions,
which have not been previously investigated.

3 PROBLEM STATEMENT
We hereby present some definitions and give the problem statement.

Definition 3.1 (Building Footprint). A building footprint 𝑏 refers
to a 2-D polygonal area delineated by the exterior boundary of the
building, where each vertex on the polygon has a spatial location

(i.e., longitude and latitude). Each building may have a type tag
(e.g., sports center). For simplicity, we use the term building in the
rest of the paper.

In OSM data, only some of the buildings (e.g., 30% in Singapore)
are annotated with type tags. For the remaining buildings without
type tags, we manually assign the tag ‘unknown’.

Definition 3.2 (Building Group). A building group refers to the
collection of buildings in a defined spatial area. To obtain these
building groups, we utilize road networks to partition the city
into distinct sections, also known as Traffic Analysis Zones. The
collection contains tightly connected buildings with relatively ho-
mogeneous features (e.g., shapes) [26].

Definition 3.3 (Urban Region). Urban regions U refer to a set
of disjoint city areas, usually obtained through a certain partition
approach (e.g., census tracts). Each urban region 𝑢 may include
multiple building groups.

Problem Statement. (Urban Region Representation Learning)
Given a set of urban regions U = {𝑢1, 𝑢2, ...}, the goal of urban
region representation learning is to learn a mapping function that
generates a vector representation 𝑧𝑖 ∈ Rk for each region 𝑢𝑖 in the
Euclidean space, where 𝑘 is the uniform dimension for all 𝑢𝑖 ∈ U.

4 METHODOLOGY
We present our framework RegionDCL. As shown in Figure 2, it
consists of three components: (1) Feature Pre-processing, which
transforms individual geospatial objects into feature vectors and
annotates empty space with random points using Poisson Disk
Sampling, (2) Building Group Encoding, which models spatial distri-
butions and intercorrelations of buildings with a distance-biased
Transformer encoder, and (3) Dual Contrastive Learning, which or-
ganizes buildings into groups and preserves both building group
similarity and spatial proximity to derive region representations.

4.1 Feature Pre-processing
We first present how to pre-process individual OSM buildings and
POI into compact embeddings as the inputs of RegionDCL. We also
demonstrate how to deal with data-sparse areas in a city.

4.1.1 Building Features. OSM buildings comprise 2-D polygonal
building shapes, spatial locations, and type tags, with the 2-D shapes
playing a crucial role in characterizing urban areas. For instance,
Singapore’s buildings in industrial areas tend to be rectangular,
whereas those in residential areas are often twisted (See Fig. 1).

Despite various models for 2-D shape encoding, Convolutional
Neural Network (CNN) remains one of the most widely used and
effective approaches[16]. To leverage this, we employ an ImageNet
pre-trained ResNet-18 [11] to encode building polygons into visual
features. The visual features are made more invariant to building
size and rotation by first aligning the longest edge of each build-
ing’s bounding box with the horizontal axis and then resizing and
rasterizing the building polygon into a 224×224 image, following
the procedure outlined in [34]. In order to retain the information
on the size and rotation of each building, the resulting vectors are
concatenated with three scalar values (size in square meters, 𝑐𝑜𝑠𝛼 ,
𝑠𝑖𝑛𝛼) that represent the building’s size and rotation angle.
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Figure 2: An overview of RegionDCL. Its backbone is dual contrastive learning with a triplet loss at both building group and
region levels, where the region-level encoder is a Transformer encoder with average-pooling, and the group-level encoder is a
building group encoder that consists of two Transformer encoders (i.e., Distance-biased Transformer encoder and average-
pooling Transformer encoder).

While the visual appearance of a building provides some indica-
tion of its function, this information is usually not definitive. For
instance, two distinct city facilities like a parking lot and a factory
can both have rectangular shapes on the map. To address this limita-
tion, we propose to supplement building features with POIs, as POIs
are readily available in OSM and offer clear semantic information
about the human activities performed within the building [36]. We
represent each POI category as a one-hot vector and sum up the
one-hot vectors of all POIs within a building. We also use one-hot
vectors to represent the type tag of buildings. The extracted visual
features from CNN, one-hot vector of POI category, and one-hot
vector of building-type information are concatenated to form the
final building features (denoted as 𝑏).

It is worth noting that certain POIs, such as small infrastructures,
are often located outside buildings in the OSM data. We similarly
represent them as one-hot vectors (denoted as 𝑡 ), but treat them
separately from buildings to allow for a clearer distinction between
buildings and their surrounding environment.

4.1.2 Random Points. Geospatial objects exhibit an uneven dis-
tribution across cities, resulting in the presence of data-sparse or
even empty areas that have been generally neglected in previous
studies. These empty areas can have distinct shapes and sizes, and
be surrounded by different geospatial objects, which hold important
implications for various downstream tasks. For example, a large,
irregularly shaped empty area located at the edge of a city is likely
to be a natural park with low population density, while a small,
polygonal empty area surrounded by bus stops is likely to indicate
an (unmapped) residential area with high population density. While
traditional hand-crafted features, e.g. the average distance between
nearest neighbors [5] and Ripley’s K function [25], can provide
some insights into spatial sparsity, they have limited capacity in
capturing the shapes and environments of the empty areas.

To tackle the challenge, we propose to incorporate random points
within these empty areas to annotate their existence. Our approach
leverages the concept of Poisson Disk Sampling (PDS) [2], which
allows for the uniform generation of random points within a 2-D
plane space (i.e., the empty area in our case). As depicted in Fig.
2, PDS generates random points that are spatially compact but
maintain a minimum user-specified distance (sampling radius 𝑟 )
between each pair of points. This process yields evenly distributed

“sampling disks” that cover the entire plane space. The random
points thus serve as annotators that provide a finer representation of
empty areas, capturing their variant shapes and sizes. Furthermore,
we assign all random points with a unified feature vector (denoted
as 𝑠) and model their relationship with surrounding buildings with
an attention mechanism (as detailed in Section 4.2). With PDS and
the attention mechanism, we are able to preserve the existence as
well as the contextual information of empty areas.

4.2 Building Group Encoding
After obtaining individual embeddings of buildings, POI outside
buildings, and random points, we propose to encode them in groups
considering their spatial distributions and intercorrelations.

4.2.1 Pair-wise building distances. The spatial distance between
geospatial objects plays a crucial role in characterizing the struc-
tural information of urban regions [9]. This is especially true for
buildings, where their arrangement varies depending on their in-
tended use. For instance, industrial buildings in Singapore are of-
ten arranged in a grid-like fashion, while residential buildings
are arranged more organically (as demonstrated in Fig. 1). Un-
like previous work that ignores in-region spatial distances or only
takes into account the nearest spatial distances [35, 36], our ap-
proach preserves all relative distances within each building group
by constructing a pair-wise distance matrix 𝐷 . Specifically, let
𝐻 = [𝑏𝑇1 , ...𝑏

𝑇
𝑗
, 𝑠𝑇1 , ..., 𝑠

𝑇
𝑙
]𝑇 ∈ R𝑛×𝑑 denote the features of build-

ings and random points within a building group, we calculate the
distancematrix𝐷 between each pair of buildings and random points
via Haversine function:

𝐷𝑖 𝑗 =2𝐸 · arcsin(
√︂
sin2 (

𝜙𝑖−𝜙 𝑗
2

)+cos(𝜙𝑖 ) cos(𝜙 𝑗 ) sin2 (
𝜃𝑖−𝜃 𝑗

2
)))
(1)

where 𝐷𝑖 𝑗 denotes the 𝑖 𝑗-th element of matrix 𝐷 , and 𝐸 denotes
the approximate earth’s radius. 𝜙𝑖 and 𝜙 𝑗 are the latitudes of the
𝑖-th and the 𝑗-th building (or random point), and 𝜃𝑖 and 𝜃 𝑗 are
their longitudes. The pair-wise distance matrix fully describes the
spatial arrangement of geospatial objects (i.e., buildings and random
points) within a building group.

4.2.2 Distance-biased Transformer encoder. We propose to use the
Transformer encoder [29] to encode building groups. Unlike graph
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convolution layers that focus on neighbor interactions, the Trans-
former encoder can efficiently capture global interactions among all
objects within each building group. Particularly, the self-attention
mechanism can capture the contextual information of empty areas
by aggregating building features to random points.

The Transformer encoder contains a multi-head self-attention
module and a position-wise feed-forward network, where the multi-
head self-attention is formulated as:

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉 (2)

𝐴𝑡𝑡𝛽 (𝐻 ) = softmax(𝑄𝐾
𝑇

√
𝑑

) (3)

𝑀𝑢𝑙 (𝐻 ) = Concatenate(𝐴𝑡𝑡𝑛1 (𝐻 ), ..., 𝐴𝑡𝑡𝑛𝛽 (𝐻 )) (4)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are projection matrices and 𝛽 is the number
of attention heads. However, the above self-attention module (i.e.,
Eq. (3)) ignores buildings’ spatial position information. Intuitively,
the more distant objects should have fewer interactions (i.e., smaller
attention weights) with each other. Inspired by the recent success
of Graphormer [39], we add a normalized pair-wise distance matrix
to self-attention as a bias term:

𝐴𝑡𝑡𝛽 (𝐻 ) = softmax(𝑄𝐾
𝑇

√
𝑑

+ 𝜆�̂�)𝑉 (5)

�̂�𝑖 𝑗 = log( 1 +maxPooling(𝐷)1.5

1 + 𝐷1.5
𝑖 𝑗

) (6)

where maxPooling(𝐷) denotes the max value in the pair-wise dis-
tance matrix D, and 𝜆 is a trainable value. We follow Calafiore et
al. [3] and Huang et al. [12] to set the exponential factor as 1.5.
In such a method, the added bias term 𝜆�̂� carries the correlation
of objects with respect to their relative distances to bring spatial
position information to self-attention.

For those outside POIs, we feed them into a linear layer. The
outputs, together with the outputs of the above distance-biased
Transformer encoder, are subsequently fed into a vanilla Trans-
former encoder with average-pooling to generate an embedding
vector for the building group.

4.3 Dual Contrastive Learning
The partitioning of urban regions is a non-trivial aspect of down-
stream tasks, yet it has been largely overlooked in previous stud-
ies. Existing methods have primarily focused on a single partition
scheme, such as grids [14], census tracts [38], or traffic analysis
zones [12]. However, this narrow focus can lead to inconsistent
representation qualities, as methods that perform well under one
partition scheme may not perform well under a different scheme, as
shown in Section 5.5.1. To mitigate the shortcoming, we propose to
use building groups as a glue of different region partitions, which is
achieved through a dual contrastive learning approach at the group
level and the region level.

4.3.1 Group-level Contrastive Learning. Wepropose encoding build-
ing groups derived from OSM’s fine-grained road networks, includ-
ing primary, secondary, tertiary, and footway roads. Compared to
regions in downstream tasks that are typically large and diverse,
building groups are more fine-grained and homogeneous in terms
of urban functions, as they are the basic units in urban planning

[37]. Encoding building groups into intermediate embeddings en-
ables us to capture the finer details of urban structures. However, a
novel training method is necessary to learn effective building group
embeddings as the common technique of preserving cross-region
human transitions in previous work [9, 31, 33, 38, 44, 46] can not be
applied to our settings where human mobility data is not available.

Inspired by the recent success of contrastive learning [4], we
propose to extract features with a self-supervised task, i.e. instance
discrimination. The intuition is that building groups that differ
in a small number of buildings should be similar, and the model
is expected to discriminate the most similar building group from
random sampled candidates. Specifically, given a training batch,
every sample (i.e., building group) in this batch is selected as an
anchor, denoted as 𝑃𝑖 . For each anchor sample within the batch,
we randomly remove/dropout a small number of buildings inside
to generate a positive sample, denoted as 𝑃+

𝑖
. The other building

groups within the batch are treated as negative samples. Our model
is later trained with the anchors, positive samples, and negative
samples using an InfoNCE loss [28]:

L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 = − log( 𝑒sim(𝑃𝑖 , 𝑃+𝑖 )/𝜏∑𝑛
𝑖=0 𝑒

sim(𝑃𝑖 , 𝑃 𝑗 )/𝜏
) (7)

where 𝑛 is batch size, sim(·, ·) is a similarity measure function,
𝜏 = 0.05 is a temperature parameter. As building group embeddings
can be interpreted as a distribution of inside buildings, we apply
KL-divergence as the similarity measure.

4.3.2 Region-level Contrastive Learning. Urban regions are often
composed of multiple building groups, with some beingmore impor-
tant in characterizing regions. Thus, we use a vanilla Transformer
encoder with average-pooling to aggregate building group embed-
dings into region representations, where the self-attention weights
capture the different importance of building groups.

Previous studies have shown that the effectiveness of region
representations can be improved by preserving inter-region cor-
relations [9]. Most existing work uncovers such correlations with
human mobility data that directly reflect region connectivity. How-
ever, this becomes challengingwith onlyOSMbuilding and POI data.
Leveraging the spatial proximity of the regions can be a straightfor-
ward strategy, as according to Tobler’s first law of geography [27],
near regions are more likely to be correlated than distant regions.

Inspired by this idea, we propose to preserve spatial proximity
of regions through contrastive learning at the region level. For
each region (i.e., anchor region) in a city, we select a neighboring
region as the positive region and randomly choose another region
as the negative region. We use a triplet Loss to preserve inter-region
spatial proximity in the embedding space:

L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 =𝑚𝑎𝑥 ( | |𝑧𝑎 − 𝑧𝑝 | | − | |𝑧𝑎 − 𝑧𝑛 | | +𝑚, 0) (8)

where | | · | | represents the L1 distance. 𝑧𝑎 , 𝑧𝑝 , and 𝑧𝑛 denote the
anchor, positive and negative region representations, respectively,
and𝑚 is a hyper-parameter that controls the distance between the
positive and negative embeddings in the embedding space.

While preserving the spatial proximity can be empirically effec-
tive [32], we posit that distant regions sometimes contain similar
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building groups. In this case, a fixed margin𝑚 would indiscrim-
inately push all the embeddings of distant regions further apart,
causing the loss of the similarities between distant regions.

To resolve this issue, we propose to dynamically adjust the mar-
gin value based on the similarity of building groups they contain.
We avoid using the naïve average similarity as it can be extremum-
sensitive (i.e., a group extremely different from other groups can sig-
nificantly affect the average similarity.), Instead, we propose to only
focus on those similar building group pairs, which is achieved by
Wasserstein distance. Specifically, suppose𝑢𝑎, 𝑢𝑏 are two randomly-
picked regions and 𝑢𝑎 ≠ 𝑢𝑏 , we first calculate the matching cost
matrix 𝐶 ∈ R𝑚×𝑛 with JS divergence:

𝐶𝑖 𝑗 = 𝐽𝑆 (𝑎𝑖 | |𝑏 𝑗 ) =
1
2
𝐾𝐿(𝑎𝑖 | |

𝑎𝑖 + 𝑏 𝑗
2

) + 1
2
𝐾𝐿(𝑏 𝑗 | |

𝑎𝑖 + 𝑏 𝑗
2

) (9)

where 𝑎 ∈ 𝑢𝑎 and 𝑏 ∈ 𝑢𝑏 are the building group embeddings within
the two regions. We empirically use JS divergence to compute the
matching cost for numerical stability. Then we utilize Wasserstein
distance to obtain the minimum matching cost of the building
groups between two regions:

𝑊 = min
𝜋

𝑚∑︁
𝑖=1

𝑛∑︁
𝑖=1

𝜋𝑖 𝑗𝐶𝑖 𝑗 , s.t.
𝑚∑︁
𝑖=1

𝜋𝑖 𝑗 = 1 and
𝑛∑︁
𝑗=1

𝜋𝑖 𝑗 = 1 (10)

which is an optimal transport problem that can be solved in poly-
nomial time. Finally, we replace the fixed𝑚 in Eq. (8):

L̂𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max( | |𝑧𝑎 − 𝑧𝑝 | | − | |𝑧𝑎 − 𝑧𝑏 | | + 𝜆 ·𝑊, 0) (11)

where 𝜆 is a hyper-parameter to scale the Wasserstein Distance.
Now, the new margin 𝜆 ·𝑊 will automatically get smaller when
two regions have some building groups in common and get larger
when two regions are vastly different.

4.3.3 Training on Shifted Windows. We empirically find that neigh-
boring regions may also be extremely different, which leads to
unstable model performance. To address the problem, we propose
to use overlapped regions as positive samples since they always
share common building groups and are more likely to be similar.

Specifically, as shown in Fig. 2, we use a square window with
a given size (e.g., 2km×2km) and shift the window horizontally
and vertically to generate training regions. Then, the overlapped
regions are selected as positive samples, while the non-overlapping
windows are regarded as negative pairs. As real-world downstream
region partitions are often in different sizes, we also use shifted
windows with multiple sizes to further boost the model’s adaptabil-
ity. By training on shifted windows, our framework is decoupled
from downstream region partitions compared to previous work.
In the implementation, we separately train the group-level and
region-level contrastive learning for better efficiency.

5 EXPERIMENTS
We conduct experiments to evaluate the effectiveness of RegionDCL
from the following aspects: (1) the performance of our derived rep-
resentations in downstream tasks, (2) the usefulness of our model
in data-sparse regions and different region partitions, (3) the quality
of building group embeddings derived by RegionDCL, and (4) the
effect of important hyper-parameters.

5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments with OpenStreetMap data
of Singapore and New York City. New York City data has a massive
population and diverse urban zone functions and is commonly used
in previous work [14, 32, 33, 38, 44]. Singapore has more data-sparse
regions and a much higher population density than New York City.
The statistics of the used cities are shown in Table 1.

Table 1: Dataset Statistics

City Buildings POIs Building Groups Regions

Singapore 109,877 17,088 5,824 304
New York City 1,081,256 41,963 29,008 2324

For evaluation benchmark on two downstream tasks, we collect
the land use data of Singapore and New York City from Singapore
Master Plan 2019 and NYC MapPLUTO, respectively. We collect
population density data from WorldPop for both cities. In addition,
we utilize Singapore Subzones and NYC Census Tracts as region
partitions in evaluation unless otherwise specified. Please refer to
Appendix A for the online resources for all datasets.

5.1.2 Baselines. We compare with representative baseline models,
include five models that can take the same input data as RegionDCL,
three model variants and ablations, as well as two state-of-the-art
region embedding techniques based on human mobility.
(1) Baselines with the same input data as RegionDCL.

• Place2Vec [41]: This method preserves the co-occurrence of
POI categories to learn region representations. We regard
building type tags as POI categories.

• Doc2Vec [20]: This method models spatial objects as words
and regions as documents with their spatial co-occurrence.
We take the document embeddings as region representations.

• GAE [15]: This method encodes graph nodes with GCN and
optimizes node features via feature reconstruction. We aver-
age the node embeddings as region representations.

• DGI [30]: This method encodes graph nodes with GCN and
thenmaximizes themutual information between node embed-
dings and graph embeddings through contrastive learning.
We take the graph embeddings as region representations.

• Urban2Vec [32]: This framework integrates two different
modalities of geospatial data, and performs contrastive learn-
ing to learn region embeddings via triplet loss. We feed the
same input data to Urban2Vec as to RegionDCL.

(2) Model variants and ablations, where we demonstrate the
effectiveness of our model components.
• Transformer. We use vanilla Transformer [29] to encode build-
ings and POIs. We train it with group-level contrastive learn-
ing and average the derived building group embeddings as
region representations to demonstrate the effectiveness of
our building group encoding strategy.

• RegionDCL-no random. This is a variant of our model in
which we remove the Poisson Disk Sampling part (Sec. 4.1.2).

• RegionDCL-fixed margin. This is also a variant of our model
in which we remove the proposed adaptive margin (Sec. 4.3.2).
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(3) Baselines based on human mobility. As most state-of-the-
art region embedding techniques are based on human mobility,
we compare RegionDCL with such methods to demonstrate
that RegionDCL with readily accessible OSM data is able to
outperform methods relying on human mobility data, which is
often difficult to obtain.
• MVURE [44]: This framework models the cross-modality
interaction of multi-modality features (e.g., POIs and Check-
ins) via graph attention networks.

• MGFN [33]: This method learns region embeddings by clus-
tering per-hour mobility graphs and applying self-attention.

For those graph-based methods, i.e., GAE and DGI, we construct
triangle graphs with Delaunay Triangulation on buildings and POIs
for each region, following [7]. Then, we use the building features
and POI features wrapped in Section 4.1 as node features and ini-
tialize the edge weights with Eq. (1).

5.1.3 Implementation Details. In our experiments, all embedding
dimensions are set to 64. For Place2Vec and Doc2Vec, we set win-
dow size=5, KNN sampling 𝑘 = 10. For GAE and DGI, we use a
2-layer GCN following their suggestions. The triplet margin𝑚 in
Urban2Vec and our framework are set to 10. For Transformer and
our framework, the number of attention heads is set to 8. In our
framework, we use a two-layer distanced-biased Transformer en-
coder followed by a 2-layer Transformer Encoder with average
pooling. The 𝑟 in Poisson Disk Sampling is set to 100 meters, and
the shifted window sizes are 1000, 2000, and 3000 meters. The scaler
𝜆 in the proposed adaptive margin is set to 50.

5.2 Land Use Inference
In this task, we use the region representations derived by Re-
gionDCL and baseline methods to infer urban functional distri-
butions, i.e., the proportion of land use areas within each region.
Following the settings in [21], we merge the fine-grained ground-
truth annotations of land use into five major categories called Resi-
dential, Industrial, Commercial, Open Space, and Others.

5.2.1 Evaluation Metrics. The land use inference task is a label
distribution learning problem [10, 12]. Evaluation metrics include
L1 distance, KL-divergence, and Cosine similarities, which mea-
sure the similarity between estimated functional distributions and
ground-truth labels. To infer land use, we utilize a 2-layer Multi-
Layer Perceptron (MLP) with 512 hidden units and five output units.
We randomly split the regions of each city into 60% training, 20%
validation, and 20% test set (i.e., 5-fold cross-validation). The MLP is
optimized by KL-divergence loss for 150 epochs, and the test result
at the lowest validation loss is recorded. We run each algorithm 30
times and report the average value and standard deviation.

5.2.2 Results. Table 2 demonstrates the performance on land use
inference in two cities, where the symbol ↓ indicates the smaller
score, the better model performance; ↑ indicates opposite results. To
rigorously evaluate algorithm effectiveness, we exclude the results
of MVURE andMGFN in this table as they take human mobility
data as input. The best results are bolded. From the table, we have
the following observations:
• The performance of the model is significantly affected by the
information it preserves. The GAE model that only preserves the

input features with reconstruction loss is inferior to all baseline
models. While methods that only preserve the spatial proximity
of buildings and POIs (i.e., Place2Vec, Doc2Vec, and Urban2Vec)
perform significantly better than GAE, they fail to fully capture
the spatial distributions and similarities in the input features.

• Methods that extensively mine building feature similarities and
spatial interactions (i.e., DGI, Transformer, and RegionDCL and
its variants) exhibit significantly superiority over other base-
lines, which supports our design considerations of representation
learning outlined in Section 4.2. Although Transformer does not
explicitly account for spatial locations of buildings, it achieves
competitive performance through contrastive learning on build-
ing groups, which is comparable to that of DGI that models
spatial distances to neighboring objects. This highlights the ef-
fectiveness of our group-level contrastive learning strategy.

• The proposed RegionDCL outperforms all baselines by anno-
tating empty areas, incorporating building spatial distributions,
considering spatial proximity between regions, and preserving
similarity among building groups. The comparison results be-
tween RegionDCL and its variant RegionDCL-no random indi-
cate that filling empty areas with random points significantly
enhances the overall embedding quality. The comparison results
between RegionDCL and its variant RegionDCL-fixed margin
demonstrate the effectiveness of our proposed adaptive margin
in preserving building group similarities.

• RegionDCL demonstrates greater improvements in Singapore
compared to New York City. Given the remarkably distinct build-
ing styles and more data-sparse areas in Singapore [26], these
results further validate our design choices.

5.3 Population Density Estimation
In this task, we use the learned urban region representations to
estimate the average population density in each region.

5.3.1 Evaluation Metrics. The population density estimation task
is a regression problem. Evaluation metrics include absolute error
(MAE), root mean squared error (RMSE), and coefficient of determi-
nation (𝑅2). To infer population density, we randomly split the city
into 80% training and 20% test regions and train a random forest
regressor [17] on different data splits. We run each algorithm 30
times and report the average value and standard deviation.

5.3.2 Results. Experimental results are shown in Table 3. Unlike
the land use inference task, methods that explicitly incorporate
spatial proximity (i.e., DGI, Urban2Vec, and RegionDCL) signifi-
cantly outperform the other methods. RegionDCL outperforms the
best baseline in both cities (12.4% in Singapore and 5.9% in New
York City in terms of R2). The proposed random point sampling
makes major contributions to the achieved improvements (6% in
Singapore and 4% in New York City).

5.4 Comparison with Mobility-based Methods
We compare with two latest methods MVURE [44] and MGFN
[33] to demonstrate our superiority over mobility-based methods.
We collect the same official NYC Taxi Trip dataset (See Appendix
A) with 10,906,859 pick-up and drop-off locations, and re-conduct
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Table 2: Land Use Inference in Singapore and New York City

Models Singapore New York City

L1↓ KL↓ Cosine↑ L1↓ KL↓ Cosine↑
Urban2Vec 0.657±0.033 0.467±0.043 0.804±0.017 0.473±0.018 0.295±0.015 0.890±0.007
Place2Vec 0.645±0.039 0.451±0.047 0.812±0.018 0.518±0.016 0.308±0.012 0.878±0.005
Doc2Vec 0.679±0.050 0.469±0.058 0.789±0.027 0.506±0.015 0.299±0.016 0.885±0.008
GAE 0.759±0.040 0.547±0.051 0.765±0.022 0.589±0.011 0.365±0.011 0.855±0.007
DGI 0.598±0.029 0.372±0.032 0.846±0.012 0.433±0.009 0.237±0.012 0.907±0.005
Transformer 0.556±0.046 0.357±0.070 0.850±0.026 0.436±0.020 0.251±0.018 0.903±0.008
RegionDCL-no random 0.535±0.054 0.321±0.066 0.863±0.030 0.422±0.011 0.234±0.010 0.910±0.005
RegionDCL-fixed margin 0.515±0.042 0.303±0.040 0.872±0.020 0.426±0.011 0.248±0.018 0.905±0.008
RegionDCL 0.498±0.038 0.294±0.047 0.879±0.021 0.418±0.010 0.229±0.008 0.912±0.004

Table 3: Population Density Inference in Singapore and New York City

Models Singapore New York City

MAE↓ RMSE↓ R2 ↑ MAE↓ RMSE↓ R2 ↑
Urban2Vec 6667.84±623.27 8737.27±902.41 0.303±0.119 5328.38±200.58 7410.42±261.89 0.522±0.028
Place2Vec 6952.34±713.30 9696.31±1239.65 0.171±0.121 8109.79±175.18 10228.61±261.43 0.096±0.043
Doc2Vec 6982.85±650.76 9506.81±1052.25 0.206±0.062 7734.56±247.99 9827.56±354.51 0.166±0.031
GAE 7183.24±579.82 9374.20±913.56 0.163±0.112 8010.73±290.33 10341.09±362.28 0.071±0.027
DGI 6423.44±671.25 8495.16±972.87 0.305±0.151 5330.11±261.77 7381.92±358.09 0.526±0.032
Transformer 6837.67±716.28 9042.02±1032.99 0.269±0.081 5345.17±216.30 7379.47±308.36 0.522±0.039
RegionDCL-no random 6400.50±630.35 8437.89±993.41 0.364±0.075 5228.27±210.46 7278.70±322.85 0.535±0.040
RegionDCL-fixed margin 6237.61±647.54 8387.56±948.78 0.365±0.107 5125.66±184.27 7159.65±250.12 0.551±0.033
RegionDCL 5807.54±522.74 7942.74±779.44 0.427±0.108 5020.20±216.63 6960.51±282.35 0.575±0.039

One-tailed two-sample t-test on RegionDCL and the second best method

Test statistic 3.9651 2.4272 3.5909 4.9958 5.0616 5.2455
p-value 0.0001 0.0091 0.0003 0.0000 0.0000 0.0000

Table 4: Land Use and Population Density Inference in New York City with Different Input Data

Models Input Data Land Use Inference Population Density Inference

L1↓ KL↓ Cosine↑ MAE↓ RMSE↓ R2 ↑
MGFN Mobility 0.503±0.013 0.304±0.015 0.882±0.007 5731.36±169.52 7481.89±239.00 0.516±0.036
MVURE Mobility,POI 0.542±0.014 0.329±0.014 0.872±0.006 6557.12±265.30 8307.58±329.44 0.404±0.034
MVURE Mobility,POI,Building 0.491±0.012 0.284±0.013 0.888±0.006 5447.44±195.38 7304.56±251.11 0.539±0.1030
RegionDCL Building,POI 0.418±0.010 0.229±0.008 0.912±0.004 5020.20±216.63 6960.51±282.35 0.575±0.039

land use inference and population density estimation tasks for
evaluation.

As shown in Table 4, when human mobility data is available,
adding building data can further enhance the embedding effective-
ness as demonstrated by the results of MVURE. This empirically
supports our claim of data effectiveness in Section 1. While MGFN
yields good results by utilizing hundreds of fine-grained per-hour
mobility graphs, RegionDCL still performs the best without using
mobility data, which highlights the potential of our method in those
cities where human mobility data is not available.

5.5 Case Studies
We conduct case studies using Singapore data to demonstrate the
capability of RegionDCL in dealing with different region partitions
and data-sparse regions.

5.5.1 Adaptability to Different Region Partitions. The performance
of the region representation models can be greatly influenced by the
choice of region partition. To evaluate the adaptability of the mod-
els to different region partitions, we replace Singapore Subzones
with 2km×2km grids that are widely used in region representation
learning. As mentioned in Section 4.3.3, our model can adapt to
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Table 5: Land Use Inference of Grid Regions in Singapore

Models Land Use Inference

L1↓ KL↓ Cosine↑
Urban2Vec 0.726±0.024 0.527±0.028 0.764±0.014
Place2Vec 0.645±0.051 0.449±0.072 0.814±0.026
Doc2Vec 0.735±0.037 0.493±0.036 0.769±0.016
GAE 0.674±0.054 0.428±0.060 0.804±0.029
DGI 0.621±0.034 0.364±0.050 0.836±0.018
Transformer 0.541±0.044 0.326±0.053 0.860±0.020
RegionDCL 0.485±0.020 0.260±0.028 0.890±0.012
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Figure 3: The Prediction Error in Regions with different num-
bers of Buildings and POIs in Singapore.

new region partitions without re-training, while baseline methods
must be retrained on the new partition.

As shown in Table 5, methods designed for a single region par-
tition (Urban2Vec, Doc2Vec, and DGI) suffer from a significant
performance decay, while Transformer and RegionDCL still per-
form stably, indicating that the proposed dual contrastive learning
has improved the model’s adaptability to different region partitions.

5.5.2 Representation Quality in Data-sparse Regions. We perform
an evaluation of the representation quality of each region on land
use inference and population density estimation tasks. The results
by dividing all regions into four groups of the same size (i.e., 76
regions), based on the number of POIs and buildings they contained.
The average L1 distance andMAE of each group is reported in Fig. 3.

From Fig. 3, we observe that RegionDCL consistently achieves
the lowest prediction error on land use inference and population
density estimation tasks. This performance superiority is especially
prominent in regions with fewer than 76 buildings and POIs, indi-
cating that RegionDCL generates high-quality representations for
regions even with sparse building and POI information. Further-
more, the comparison of RegionDCLwith its variantRegionDCL-no
random highlights that the improvement is largely attributed to
the proposed random point sampling strategy.

Beyond the quantitative analysis, we also visualized the K-Means
clusters of building group embeddings from RegionDCL to further
demonstrate the representation quality. Please refer to Appendix
B.2 for the visualization results.

5.6 Parameter Sensitivity Analysis
We show the parameter sensitivity of RegionDCL to its two key
hyper-parameters (i.e., the radius 𝑟 of Poisson Disk Sampling and
the scaler 𝜆 in adaptive margin). We evaluate RegionDCL’s per-
formance with L1-distance for Land Use Inference and MAE for
Population Density Inference in Singapore.

5.6.1 Poisson Disk Sampling Radius 𝑟 . In Poisson Disk Sampling,
the hyper-parameter 𝑟 is used to control the radius of the sampling
disk, where larger 𝑟 results in more sparse random points, and vice
versa. As shown in Table 6, too sparse random points (i.e., radius
≥ 150𝑚) lead to a performance decline, as too-few random points
cannot sufficiently describe the size and shape of empty areas. On
the other side, too-dense random points have a slightly negative
effect as they would bring noisy data in training the model.

Table 6: The effect of Poisson Disk Sampling radius 𝑟

𝑟 50 75 100 125 150 175

Random Points 107925 39170 18970 10749 6649 4445
L1 - Land Use↓ 0.518 0.514 0.508 0.511 0.523 0.528
MAE - Population↓ 6042 6128 5856 5798 6440 6540

5.6.2 The Scaler 𝜆 in Adaptive Margin. The proposed adaptive mar-
gin in the formulated triplet loss (i.e., Eq. (11)) contains a 𝜆 to scale
the Wasserstein Distance, where larger 𝜆 leads to larger embed-
ding distances between dissimilar regions. As shown in Table 7,
A large or small 𝜆 would lead to significant performance decay.
50 ≤ 𝜆 ≤ 200 is an ideal range for high model performance.

Table 7: The effect of scaler 𝜆 in Adaptive Margin

𝜆 1 5 10 20 50 100 200 300 500

L1 - Land Use↓ 0.541 0.528 0.516 0.506 0.498 0.494 0.492 0.507 0.523
MAE - Population↓ 6637 6246 6131 6048 5986 5980 6105 6298 6491

6 CONCLUSIONS
In this work, we proposed an unsupervised model RegionDCL to
learn urban region representations with OpenStreetMap (OSM)
data via contrastive learning in the two levels of building groups
and regions. We empirically demonstrated its effectiveness on two
typical downstream tasks, even for data-sparse regions or with
different region partitions. We also visualized the learned build-
ing group embeddings to show its promising performance against
ground truth land use. Potential future work includes: 1) integrating
more OSM features (e.g., bus route) into region representations,
2) designing data augmentation techniques to boost contrastive
learning for hard pattern mining, and 3) adapting RegionDCL to
multiple cities for urban sensing applications.
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Table 8: The data sources and links of used datasets

Data Type Data Source Link
Buildings, POIs OpenStreetMap https://download.geofabrik.de/
Region partitions - Singapore Singapore Public Data https://data.gov.sg/dataset/master-plan-2019-subzone-boundary-no-sea
Land use - Singapore Singapore Public Data https://data.gov.sg/dataset/master-plan-2019-land-use-laye
Region partitions - New York City NYC Planning https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
Land use - New York City NYC Planning https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
Population density WorldPop https://hub.worldpop.org/geodata/listing?id=77
Trajectory - New York City NYC Yellow Taxi Trip https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t

(a) Ground truth land use (b) RegionDCL (c) Transformer

Figure 4: The K-Means clustering results of building group embeddings.

A DATA SOURCE
In this paper, all datasets we used are available online. We hereby
provide their links in Table 8.

B ADDITIONAL EXPERIMENT RESULTS
B.1 The effect of dropout rate in the group-level

contrastive learning
The proposed group-level contrastive learning contains a dropout
rate to control howmany objects to dropwhen constructing positive
building group pairs. Smaller dropout rates will result in more
similar positive sample pairs. As shown in Table 9, a dropout rate
of 0.2 can ensure the model captures minor differences between
positive samples effectively.

Table 9: The effect of dropout rate

dropout rate 0 0.1 0.2 0.3 0.4

L1 - Land Use↓ 0.553 0.524 0.491 0.518 0.559
MAE - Population↓ 6831 6635 6395 6542 6533

B.2 Visualization
In addition to learning region representations, RegionDCL also
demonstrates impressive unsupervised capability in discovering ur-
ban functions. To showcase this capability, we visualize the derived
building group embeddings by applying K-Means to group them
into five categories: Residential, Industrial, Commercial, Open Space,
and Others as described in Section 5.2.

The results, shown in Fig. 4, unveil that RegionDCL has largely
captured the genuine land use. Conversely, Transformer fails to
distinguish between residential, industrial, and open space areas.
Our findings suggest that RegionDCL has successfully uncovered
the representative urban functions from building groups, leading
to high-quality region representations.

https://download.geofabrik.de/
https://data.gov.sg/dataset/master-plan-2019-subzone-boundary-no-sea
https://data.gov.sg/dataset/master-plan-2019-land-use-laye
https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://hub.worldpop.org/geodata/listing?id=77
https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
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