
On Predicting and Generating a Good Break Shot in Billiards Sports

Qianru Zhang∗†, Zheng Wang∗‡, Cheng Long§‡, Siu-Ming Yiu§†

Abstract
With the proliferation of tracking devices such as cameras
and/or GPS sensors, sports data is being generated at an
unprecedented speed and the interest in collecting some
data from sports games has grown dramatically as well.
The collected data facilitates various sports analytic
tasks; however, these studies are mainly concerning with
sports such as football and basketball. It remains largely
unexplored for billiards sports though it is a popular
sport of both strategy and physical skill, and this is
mainly due to the lack of publicly available datasets.
Motivated by this, we collect a dataset of billiards sports,
which includes the layouts (i.e., locations) of billiards
balls after performing break shots, called break shot
layouts, the traces of the balls as a result of strikes
(in the form of trajectories), and detailed statistics
and performance indicators. On top of the dataset,
we investigate several tasks, including prediction and
generation on the layouts data and similarity search
on the trajectory data, which can serve different users
such as coaches, players and fans. We conduct extensive
experiments on the collected dataset for the tasks, and
the results demonstrate the superior performance of the
methods proposed in this paper.

1 INTRODUCTION
Nowadays, it becomes a common practice to collect
some data from sports games using tracking devices such
as cameras and/or GPS sensors. The collected data
facilitates various analytic tasks such as similar game
retrieval [26, 21], tactics detection [7] and score pre-
diction [2, 30], which cover sports including basketball,
soccer, volleyball and handball. Yet these analytic tasks
have not been explored on billiards sports, and this is
mainly due to the lack of publicly available datasets of
billiards sports. The billiards sport is a two-player game.
In each game, there are a certain number of rounds
(called frames). In each frame, two players take turns
to strike a billiards ball (called the cue ball) so as to

∗ Equal contribution.
† The University of Hong Kong, {qrzhang, smyiu}@cs.hku.hk
‡ Nanyang Technological University, {wang_zheng, c.long}

@ntu.edu.sg
§Corresponding author.

pot other balls (called object balls) to the pockets of
a pool table (See Figure 1 for example). The object
balls are usually associated with numbers and/or colors.
There are multiple types of billiards sports (e.g., 9-ball
and Snooker), and for different types, there are different
rules of striking object balls and also criteria of winning
a frame. For example, for 9-ball, a player needs to hit
the object ball with the smallest number among those
remaining on the table for each strike and wins the frame
if he/she pots the object ball with the number 9. Bil-
liards sport, which can be played in halls, hotels, or as
often in the club houses of other organisations, becomes
a popular recreational sport [24, 17].

Motivated by this, we propose to collect some data
capturing billiards games so that various types of data
analyses can be conducted on the data for discovering
knowledge about the games and players. Similar to other
sports such as football and basketball, billiards sports are
usually recorded as videos, which are then made publicly
available on the Web. A natural idea is to extract data
of billiards sports from videos. Specifically, we collected
the dataset from 9-ball games (i.e., one popular type
of billiards sports), which are governed by the World
Pool-Billiard Association (WPA) since 1990 for around
30 years up to now. The dataset covers games of 94
international professional 9-ball tournaments for the
last two decades, which were played by 227 professional
players. In summary, the dataset includes 3,019 records
for frames, 6,637 records for turns, and 2,082 records
for strikes. More detailed summarization could be
found in Table 1 and description in the supplementary
materials [33].

On top of the dataset, there are many potential
analytic tasks that could be explored such as similarity
search, tactics discovery, game result prediction, player
performance analysis, etc. We have explored three tasks
including prediction, generation and similarity search
on the collected dataset, with the former two on the
break shot layout data and the last on the trajectory
data of strikes. Due to the page limit, we present the
first two in this paper and the last in the supplementary
materials [33].

Break Shot Layout Prediction. The first task is
a prediction task. Intuitively, the layout of a break
shot embeds rich information of the game, and based

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited109

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

on the layout, we predict three aspects of the game:
(1) clear or not, it predicts whether the player who
performs the break shot will pocket all balls; (2) win
or not, it predicts whether the player who performs the
break shot will win the game; (3) it predicts how many
balls are consecutively potted after the break shot. The
prediction task is a fundamental functionality with many
application scenarios. One scenario is to provide a real-
time prediction of the winning result of a game based
on the layout. This prediction functionality is highly
desirable for broadcasting platforms of the billiards
games such as ChalkySticks 1. Another scenario of the
prediction functionality is to serve a billiards coach to
analyze how well a player performs and provide instant
feedback on the break performance for players. The
prediction task is non-trivial, which is mainly due to the
characteristics of the data. In particular, the billiards
layout data is unlike other existing datasets including a
set of points [31, 22] or a sequence of locations such as
trajectory data [34]. In a billiards layout, the billiards
balls including one cue (white) ball and several object
(colored) balls are all located on a rectangular pool table
with six pockets. The data embeds rich correlations,
e.g., the spatial correlations between the cue ball and
object balls, and the correlations between the cue ball
(or object balls) and the six pockets, which is unique
and important in billiards sports. In this paper, we
carefully extract those unique features that can reflect
the spatial correlation of balls and/or pockets. Then, we
use Convolutional Neural Network (CNN) to accomplish
this task in a supervised learning manner, since CNN is
inherently applicable for perceiving the correlations.
Break Shot Layout Generation. The second task
is a generation task, which is to generate realistic yet
high-quality (i.e., easy-to-clear) layouts of break shots.
For a player, it is critical to gain knowledge about such
layouts that (1) he/she can accomplish them (i.e., the
layouts are realistic) and (2) he/she would pot many
balls and even clear the table given them (i.e., the layouts
are of high quality). This task would be very useful for
the player to enrich his knowledge by generating more
layouts of such kind. To achieve the task, we explore
a data-driven solution to generate the billiards layouts
via Generative Adversarial Networks (GANs) [10], called
BLGAN. More specifically, we treat each billiards layout
as an ordered sequence, i.e., one cue ball followed by
several object balls that remain on the table in ascending
order of their numbers. Then, a generator is used to
generate a sequence of discrete tokens, each representing
a discretized location of the billiards table (e.g., a grid
cell). Besides, to generate realistic layouts that can be

1https://www.chalkysticks.com/tv

accomplished by a player, we collect the real layouts with
the clear labels from the dataset to guide the training
of the generator. In this way, the layouts are generated
with some real layouts but not random ones inputted as
seeds, and thus we believe the generated layouts tend to
be realistic ones. For the discriminator, we also collect
some real layouts that are predicted to be cleared with
high probabilities. These real layouts and the generated
layouts together are fed to the discriminator, which tries
to discriminate between the real ones and generated ones.
The discriminator provides feedback to encourage the
learning of the generator, i.e., to generate layouts that
are difficult to be discriminated from those real layouts
that are predicted to be cleared with high probabilities.
Then, the generated layouts tend to be high-quality ones.
Contributions. The main contributions of this paper
are summarized as follows. (1) We contribute a billiards
sports dataset that includes break shot data (for frames),
strike statistics data (for turns) and trajectory data (for
strikes). The layouts data is a new data type, which
is related to yet different from quite a few existing
data types including point sets, trajectories, sequences,
etc. Specifically, it consists of a point set, is order-
sensitive, and is associated with some contexts (e.g., the
pockets). In addition, the dataset has rich contents
and labels information to support various machine
learning tasks. Our dataset and codes are publicly
accessible via the link 2 and provide an opportunity
for research communities such as machine learning, data
mining, computational geometry, computer vision and
sports science, to make a significant impact. (2) We
investigate three important tasks on the top of the
dataset, including prediction and generation on break
shot layouts data and similarity search on trajectory
data of strikes. These tasks help better understand
the sports and serve different users including coaches,
players and fans. (3) Extensive empirical evaluations
are performed on the collected dataset for the three
tasks, demonstrating superior performance over baseline
methods.

2 RELATED WORK
Sports Data Analytics. Billiards corresponds to one
type of popular sports playing with a cue stick on a pool
table. The traditional research in this area addresses
the task of training the robotic players such as Deep
Green [16] to execute good shots on a physical table and
thus win a computer billiards game [3, 23]. Recently,
Pan et al. [19] study the importance of a break shot
in predicting the 9-ball game outcomes. Nowadays, it

2https://drive.google.com/drive/folders/1NBqonYLr_
cParMMn4xSeE0KTJNhjeYuG?usp=sharing

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited110

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://www.chalkysticks.com/tv
https://drive.google.com/drive/folders/1NBqonYLr_cParMMn4xSeE0KTJNhjeYuG?usp=sharing
https://drive.google.com/drive/folders/1NBqonYLr_cParMMn4xSeE0KTJNhjeYuG?usp=sharing

becomes a common practice to deploy some devices
such as GPS sensors and cameras to capture some data
of sports games, and the collected data proliferates
various sports analytic tasks. Specifically, Wang et
al. [26, 25] study the similar soccer game retrieval, which
can recommend similar games to sports fans in some
sports recommender systems such as ESPN. Decroos et
al. [7] collect event-stream data from professional soccer
matches, and explore the problem of tactics detection,
which helps players improve their tactics when they
prepare for an upcoming match. Aoki et al. [2] collect
four different sports data including basketball, soccer,
volleyball and handball, and analyze the difficulty of
predicting the outcome of sports events. Overall, these
tasks involve various sports such as basketball, soccer,
volleyball and handball.
Sequence Data Prediction. The collected billiards
data contains the layouts of break shots in real-world
9-ball games, and it can be treated as data of sequences
of one cue ball followed by several object balls in the
ascending order of their numbers. We review the existing
works of sequence data prediction as follows. The
common sequence data includes time series data and
trajectory data. Time series prediction [27, 9] is a
related but different task. It aims to train models
to fit historical data and use them to predict future
observations of a sequence. Existing methods for time
series prediction can be grouped into two categories:
classical models such as SVM [20] and recent deep
learning-based models such as RNN variants [14] or
Transformer variants [35]. On the other hand, trajectory
data corresponds to a sequence of positions to capture
the traces of moving objects. The problem of trajectory
prediction can be viewed as a sequence generation task of
predicting the future trajectories of moving objects based
on their past positions, and it is widely used to avoid
obstacles for pedestrians [1] and vehicles [12]. Our task
differs from these studies mainly in two aspects. First,
our billiards data carries the unique characteristics in
billiards sports, e.g., it captures the locations of balls on a
pool table. Second, our task is to predict some associated
information with the layout instead of forecasting a
future observation value in a sequence.
Sequence Generative Models. We review existing
generative models [29, 6, 8, 15, 18] related to the task
of break shot layout generation as follows. The majority
of deep generative models are used to generate text.
For example, SeqGAN [29] is a typical adversarial text
generation model, which builds an unbiased estimator
based on the REINFORCE algorithm [28] for the
generator, and applies the roll-out policy to obtain the
reward from the discriminator. In addition, to deal
with the differentiation difficulty when applying GAN

to generate sequences of discrete elements, GSGAN [13]
is proposed to use Gumbel-softmax output distributions
to train GAN on discrete sequences. Guo et al. [11]
propose the LeakGAN, which introduces a hierarchical
reinforcement learning framework for the generator,
and improves the performance of long text generation.
Overall, all of these works consider textual data, e.g.,
generating some sentences. Our work differs from them
mainly in the data, i.e., billiards layout data corresponds
to a set of billiards balls that are located on a pool
table. Besides, the data is associated with several
unique characteristics in billiards sports, e.g., the spatial
correlations between the cue (white) ball and object
(colored) balls.

3 DATASETS
Our real-world billiards data is extracted from the
videos of professional billiards games published on
YouTube in the most recent two decades using the
software Kinovea (https://www.kinovea.org/). The
data collection process by the software Kinovea consists
of four steps (i.e., uploading images/videos, adding
grids and markers, exporting coordinates and collecting
information), which are illustrated in detail in the
supplementary materials [33]. The dataset covers
227 players and 94 international professional 9-ball
tournaments. We collect the billiard dataset for frames,
turns and strikes. Table 1 summarizes the collected
dataset (with details included in [33]).

4 TASKS
4.1 Layout Prediction with BLCNN In this sec-
tion, we introduce how to embed each ball in billiards
layouts into a real vector. Then, the vectors are concate-
nated in an ascending order of ball numbers that should
be potted as an embedding of features, which is fed into
a classifier based on the architecture of CNN to predict
the results. The effectiveness of prediction depends on
the quality of extracted features. The proposed model
for billiards layout prediction is called BLCNN.

Feature Extraction. We capture the correlations in a
billiard layout and consider the following three kinds of
features: the location information of billiards balls on the
table, called Ball-Self (BS); the correlation between balls
and pockets, called Ball-Pocket (BP); the correlation
between balls, called Ball-Ball (BB). Figure 1 illustrates
these features from a 9-ball billiards layout.

(1) Ball-Self (BS). We map the play field of the billiards
table into a 200× 100 coordinate system and set the
bottom left corner as the origin. Thus, the range of the
x-axis of the coordinate system is [0,200], the range of
the y-axis of the coordinate system is [0,100]. For each

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited111

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 1: Summary of the collected billiards dataset (cover 94 tournaments and 227 players).

Data of Frames (3,019) Data of Turns (6,637) Data of Strikes (2,082)
1 break shot layout 1 player name 1 trajectory 6 stick top

position

2

three performance
indicators: clear

label, win label and
of potted balls label

2 # of strikes 2 camera angle
3 order of potted balls 3 cushion

7 direction
on hitting4 type of foul 4 intersection point

5 data of strikes 5 cue ball position

ball bi in the billiards layout, it is related to (x, y) in
the coordinate system, which is regarded as its position
feature on the pool table. For example, in Figure 1, the
location of ball 2 (blue) is (88.06, 76.02).

(2) Ball-Pocket (BP). To report features between each
ball and each pocket, we set the pocket at the bottom
left corner as the start pocket and mark the pockets
clockwise from 1 to 6, which is shown in Figure 1. For
each ball bi, we use four features including cushion angle,
distance to pocket, an indicator of occlusion and pocket
index to describe it wrt each pocket pj(1 ≤ j ≤ 6) on
the table. Thus, there are in total 4×6 = 24 features for
each ball bi. (i) Cushion angle. Cushion angle is used
to describe the minimum angle between the line from
a ball bi to a pocket pj (i.e., denoted by bipj) and its
two cushion edges. (ii) Distance to pocket. Distance to
pocket is the distance from a ball bi to a pocket pj (i.e.,
‖bi − pj‖2). (iii) Indicator of occlusion. An indicator
of occlusion is used to report whether there is a ball
on the line from a ball bi to a pocket pj . If so, the
indicator of occlusion is 1; 0 otherwise. (iv) Pocket
index. The pocket index is used to distinguish different
called pockets, which is from 1 to 6. Take ball 2 as an
example in Figure 1, the cushion angle is 40.80◦ between
the line b2p1 and cushion 1-6; the distance from ball 2 to
pocket 1 is 116.33; the indicator of occlusion is 1 since
cue ball appears in the path from ball 2 to pocket 1; the
pocket index is 1 for the above three features. In brief,
the feature (i) and (ii) capture the feasibility to sink
the ball 2 into a called pocket; the feature (iii) captures
whether there will be collisions or bounces on the path of
ball 2 to a called pocket; the feature (iv) is to distinguish
different called pockets varying from 1 to 6.

(3) Ball-Ball (BB). We consider two features to capture
the correlation of balls, including shot angle and pocket
index. (i) shot angle. Shot angle describes the minimum
angle between the line of two balls with consecutive
numbers on the table (i.e., denoted by bibi+1) and the
line from ball bi+1 to each pocket pj . In Figure 1, the
shot angle is 8.11◦ since the minimum angle corresponds
to the angle of a line from the cue ball to ball 2 (i.e.,
b1b2) and the line from ball 2 to pocket 3. (ii) Pocket
index. The pocket index is selected to distinguish the

1

2 3 4

56
Figure 1: Illustration of the BS, BP and BB features of
ball 2 (blue) in a layout.

index of the most likely called pocket when performing
a strike. In the case of ball 2 in Figure 1, the pocket
index is 3 since pocket 3 is more likely to be called with
the minimum shot angle 8.11◦.

CNN-based Classifier. BLCNN for the prediction
task is a CNN-based architecture, which is illustrated in
Figure 2. We consider three labels in the task including
clear or not, win or nor and the number of potted balls
after the break shot based on a given billiards layout.

In particular, for each billiards ball, we transform
its extracted features (i.e., BS, BB and BP) into real
vectors via an embedding layer, then the vectors are
concatenated into a long vector as the embedding of
the ball. To achieve the embedding, we granulate
these features into the tokens, of which the details are
provided in Section 5.1. Next, the ball embeddings are
further concatenated in the ascending order of their
numbers and we apply padding when there are missing
balls on the table. Thus, we get an embedding for
the features of billiards balls in a matrix form, called
embedded features. Note that we embed these features
via an embedding layer instead of using the feature
values directly because the feature values restrict the
embeddings in a low dimensional space, which makes it
difficult for the model to be further optimized. Further,
the embedded features are fed to a convolutional layer
with multiple filters of varying sizes to obtain feature
maps, and a global max-pooling layer is then employed to
capture the most important feature for each feature map,
and those important features are further aggregated into
a vector, which corresponds to a representation of the

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited112

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Em
be
dd
in
g

cue ball

ball 2
ball 3

ball 9

Feature extraction Embedding Convolutional layer
 with multiple filters

Global
max-pooling

Fully-connected
layer with Softmax

Figure 2: The model architecture of BLCNN, where the
colours (i.e., green and blue) denote the convolutional
filters with different sizes to obtain feature maps.

billiards layout. The layout representation is then fed
to a standard neural network architecture, i.e., the fully-
connected layer, with softmax nonlinearity to produce
the output. We train the BLCNN in a supervised
learning manner, with the cross-entropy loss for the
prediction of three types of labels (i.e., clear, win and
potted balls).

4.2 Layout Generation with BLGAN We first
explain that the layout generation task is useful by
referring to some existing literature of billiards sports [23,
3], which aim to find high-quality break shots so as
to achieve desirable layouts. For example, in [23], it
models a layout (i.e., the positions of balls in a billiards
table) as a state and how to execute a shot as an action.
Each action is controlled by five continuous parameters
including the direction of hitting, etc. It aims to search
for a shot that would generate a desirable layout. It is
also worth mentioning that our dataset includes sufficient
information on the the strike level (including the break
shots), such as the hitting position, stick top position,
direction on hitting, which we believe will facilitate more
in-depth research along this line.

Challenges. Generative Adversarial Network
(GAN) [10] is a promising framework to generate new
data based on existing data. A natural idea is to treat
a billiards layout as an ordered sequence, i.e., one cue
ball followed by object balls that remain on the table
in ascending order of their numbers, and apply GAN
to generate sequences of balls (and their locations).
Nevertheless, it has the following challenges. First,
when the physical space of the billiards balls (i.e., the
billiards table) is discretized (e.g., as a 15 × 15 grid),
applying GAN to generate the balls and their locations
(as discrete tokens) would suffer from a classical issue
of indifferentiability [13], since the samples from a
distribution of discrete tokens are not differentiable
with respect to the distribution parameters. Second, in
a break shot layout, some balls may have been potted
already, and in this case, the player who performs the

G1
(High Score)

Feature
Extraction

Discriminator (Binary Cross Entropy Loss)

Generator (Policy Gradient Loss)

GRU

Break
Patterns

Rewards

FC

Score
Function

G3
(Synthetic)

G2
(Low Score)

EmbeddingConvFC Global
MaxPool

Embedding

Billiards Dataset
(Clear)

Figure 3: The model architecture of BLGAN. The score
function is to identify two groups of layouts with high
and low scores (i.e., G1 and G2) from the dataset. In the
discriminator, it follows the architecture in BLCNN, and
provides the rewards outputted via a fully-connected
(FC) layer for training the generator. In the generator,
the break patterns are extracted from G2, each pattern
corresponds to a token, which is fed into an embedding
layer to obtain a latent vector as the initial hidden vector,
to generate the G3 via GRU followed by a FC layer.

break shot can keep his turn and thus have the chance
to clear the table given the layout. Yet a straightforward
GAN does not provide a mechanism of deciding some
ball/balls to be omitted from the generated layouts, i,e.,
meaning some of the balls are potted already.
Overview. To serve the target of generating the layouts
that are more likely to be cleared, we collect all layouts
with clear labels from the dataset. We employ a score
function (more details would be discussed later) to score
the quality of a layout, sort the layouts in descending
order of their scores and divide the billiards layouts
equally into two groups without overlapping (i.e., one
group (G1) represents layouts with high scores (high-
score), the other group (G2) represents layouts with low
scores (low-score)). G2 is fed to the generator in BLGAN
to guide the new layout generation denoted by G3.
Also, we train a discriminator to provide guidance for
improving the quality of billiards layouts the generator
generates by feeding the examples of G1 (i.e., the real
layouts with high scores) and the examples of G3 (i.e.,
the generated layouts). The GAN-based architecture is
illustrated in Figure 3.
Score Function. We use the BLCNN model to
compute the score of a layout since BLCNN model can
predict whether a layout will be cleared or not, which
indicates the quality of the layout. BLCNN involves a
fully-connected layer with the softmax function and thus
it computes scores from 0 to 1.
Generator. To overcome the issue of indifferentiability,
we follow an existing strategy [29, 4, 5] to model the
sequence generation procedure as a sequential decision
making process, which is optimized by the REINFORCE
algorithm via Policy Gradient [28] and thus it naturally

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited113

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

bypasses the differentiation difficulty for discrete tokens.
In particular, we train a generative model G to generate
a sequence C1:T = (c1, c2, ...ct,cT), ct ∈ γ, where ct
denotes the location token of a ball, and γ corresponds
to the vocabulary of all location tokens on the billiards
table. At time step t, the state s corresponds to the
sequence of generated tokens so far, i.e., (c1, c2, ...ct−1);
and the action a is to select the next location token
(i.e., ct) based on the state s. To obtain the reward
r, the existing study [29] adopts the roll-out policy by
sampling the unknown tokens in a sequence to obtain
an immediate reward from the discriminator. In this
paper, we adopt a simpler strategy, i.e., we collect a
reward only after an entire layout is generated and fed
into the discriminator - recall the discriminator would
return a score as the reward signal, and it is shared to
all steps when the entire layout has not been generated.
Besides, we collect a set of patterns, each corresponding
to a set of balls of a layout, which appear in the real
dataset. Each such pattern is called a break pattern and
is encoded using one-hot vectors. For example, consider
a break shot layout in a 9-ball game with the cue ball
and ball 1, 2, 3, 5, 7, 8, 9 on the pool table. The break
pattern of this layout is denoted by (4, 6) since ball 4 and
6 are potted already and thus missing from the layout.
When generating a layout, we randomly sample a known
break pattern and feed its vector to the generator as an
initial hidden vector to guide the generation task. This
is to handle the second challenge.
Discriminator. By empirical findings, the CNN-based
model has shown good performance to capture the
correlations for the billiards layout data, e.g., it achieves
the accuracy around 90% on the previous prediction
tasks. Thus, we adopt the CNN-based architecture in the
discriminator, whose main function is to discriminate the
generated layouts (i.e., G3) and high-score real layouts
(i.e., G1), and provide a reward signal to guide the
learning of the generator, i.e. it encourages the generator
to generate the layouts of high-score (i.e., G3) from those
low-score real layouts (i.e., G2). The optimization of
the discriminator is to minimize Binary Cross-Entropy
(BCE) between G1 and G3.

5 EXPERIMENTS
5.1 Evaluation on the Prediction Task To embed
each feature, we partition the play field of the billiards
table into grids with a predefined granularity 15 × 15
based on empirical findings, and thus we got 98 unique
location tokens for BS features given that the coordinate
system on the pool table is 200× 100. We will study the
effect of different grid cell sizes later on. For BP and BB
features, we partition the angle space and the distance
space with the resolutions of 15◦and 10, respectively.

We tried different partitions since the results are similar
and thus omitted. For each feature, we embed it into a
10-dimensional vector, and thus each ball corresponds to
a 270-dimensional vector, i.e., 10 ∗ (1 + 4 ∗ 6 + 2) = 270.
In particular, for each ball, there is one token which
corresponds to a cell on the pool table for the BS feature;
four tokens which correspond to cushion angle, distance
to pocket, indicator of occlusion and pocket index for the
BP feature for each of the six pockets; and two tokens
which correspond to shot angle and pocket index for
the BB feature. To obtain the representation of each
layout, we employ a convolutional layer with varying
filter sizes from (1, 270) to (10, 270). Note that larger
filters are helpful for capturing the correlations between
the balls. Then a global max-pooling layer is used to
generate a 30-dimensional vector as the representation
of each layout. We randomly sample 40% layouts from
the dataset for training, which is enough for achieving a
satisfactory result based on empirical findings, and the
remaining is for evaluation.
Baselines. Based on the extracted BS, BP and BB
features, we consider 11 classifiers including BLCNN,
LSTM, RBFSVM, LinearSVM, Logistic Regression, De-
cision Tree, Random Forest, Bayes, Adaboost, Gradient
Boost and XGBoost on three prediction tasks. We also
compare a heterogeneous graph neural network-based
method called HetGNN [32]. Specifically, we consider
two types of nodes (i.e., pockets and balls) in a billiards
layout, which interact with one another. The represen-
tation of the whole layout is calculated as the average of
all node embeddings, and we follow the original paper by
using the Logistic Regression classifier for the prediction.
Prediction evaluation. We report the accuracy on
three prediction tasks in Figure 4. We observe BLCNN
has the best performance with the accuracy 89.69%,
86.56% and 80.94% on the three tasks. We also notice
that the accuracy on predicting the number of potted
balls is inferior to the prediction of clear or win, since
predicting the number of potted balls is a multi-class
classification problem; while predicting clear or win
is a classical binary classification problem. Besides,
in the prediction task of potted balls, we observe the
accuracy of the Decision Tree is 4.21%, which is caused
by unbalanced labels. For example, there are only 30
billiards layouts with label 4 while there are 905 billiards
layouts with label 0. We also notice the performance
of HetGNN is consistently inferior to BLCNN on three
tasks, which indicates the features we extracted are
useful for the prediction tasks.
Parameter study. To evaluate the effect of cell size
on prediction tasks, we conduct our experiments by
varying the sizes from 10 to 25. In Table 2, we report
the performance of our BLCNN on the three prediction

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited114

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

clear win potted balls
Break shot layout prediction

0

10

20

30

40

50

60

70

80

90

100
A

cc
ur

ac
y

(%
)

89.69 86.56 80.94

85.01

68.13

51.56

66.59 62.11

31.23

61.33 58.25

48.07

60.67

57.89

37.19

60.33 52.63

4.21

63.89

72.63

45.26

56.93

61.75

14.04

62.33

66.67

31.27

63.33

69.82

42.81

62.81

72.28

45.26

55.99

69.01

34.15

BLCNN
LSTM
RBFSVM
LinearSVM
LogisticRegression
DecisionTree

RandomForest
Bayes
Adaboost
GradientBoost
XGBoost
HetGNN

Figure 4: Prediction results.

Table 2: Effect of the cell size of BLCNN.

Cell #Tokens Prediction(%)
Clear Win Potted balls

10 200 84.06 84.69 76.88
15 98 89.69 86.56 80.94
20 50 84.69 84.06 73.75
25 32 83.44 80.00 79.69

Table 3: Ablation study of BLCNN.

Model Prediction(%)
Clear Win Potted balls

BLCNN 89.69 86.56 80.94
w/o BS 88.44 85.50 73.44
w/o BP 70.00 74.37 42.19
w/o BB 86.56 84.38 76.25

tasks. When the cell size is fixed, the accuracy of potted
balls is worse than the accuracy of clear or win because
the model for the former problem is more difficult to
train. We set the cell size to 15 because it provides the
best performance in general.
Ablation study. To evaluate the importance of each
component of extracted features in BLCNN, including
Ball-Self (BS), Ball-Pocket (BP) and Ball-Ball (BB). We
perform an ablation experiment and denote BLCNN
without BS, BP and BB as w/o BS, w/o BP and w/o
BB, respectively. Table 3 shows different versions for
three prediction tasks. Overall, all these components
are helpful to enable the model to achieve superior
performance than other classifiers. The details on the
effectiveness of each component are discussed as follows.
(1) BS captures the spatial information of each ball. Thus
when it is omitted, prediction performance on potted
balls drops significantly by around 9.3%. (2) BP captures
correlations between the ball to each pocket. It consists
of most of the tokens (i.e. 4× 6 = 24 features) in a total
of 27 tokens to represent each ball, and therefore the
BP features contribute the most for all of the tasks. As
expected, if the BP features are omitted, the performance
of prediction tasks drops by 21.9% (resp. 14.1% and
47.9%) when predicting clear (resp. win and potted
balls). (3) BB captures the correlation between balls in
the layout. It also affects the overall performance. For
example, when BB features are omitted, the performance
of BLCNN on potted balls drops by 5.7%.

5.2 Evaluation on the Generation Task The goal
of BLGAN is to generate more layouts that are associated
with the clear label. We randomly sample around 1200
cleared layouts to train BLGAN. Specifically, we divide
the clear layouts into two groups, the first group has
600 layouts with higher scores (denoted by G1) and
the second group has another 600 layouts with lower
scores (denoted by G2). The convolutional layer in
the discriminator is with the ReLU activation and 10
convolutional filters with varying sizes from (1, 270) to
(10, 270), where 270 is the embedding dimensions of
each ball as mentioned above. The fully connected layer
involves one neuron with the sigmoid function to output
the reward value.
Evaluation on quality and reality. Table 4 shows
the average scores in terms of the real layouts in G2

and the synthetic layouts in G3, which involve the
four most frequently occurring break patterns, meaning
the patterns that occur more frequently compared to
others in the dataset. We observe BLGAN has good
performance on generating the layouts (i.e., G3) of high
quality, e.g., their scores are all-around 0.9 for the
four break patterns in Table 4. We also investigate
how similar the generated layouts are to the real ones.
Specifically, for two layouts under the same break
pattern, we measure the distance (dissimilarity) between
them as the sum of the distances between their balls
matched based on the numbers (e.g., the ball with
number 1 in a layout is matched with the ball with

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited115

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 4: Evaluation on quality (as scores) and reality (as relative ranks (distance)) for the break patterns.

Break patterns Pattern 1
(Ball 4 potted)

Pattern 2
(Ball 5 potted)

Pattern 3
(Ball 6 potted)

Pattern 4
(Ball 1,5 potted)

G2 (real) 0.794 0.692 0.745 0.758
G3 (synthetic) 0.898 0.955 0.946 0.986

Relative rank (distance) 0.469 0.384 0.459 0.528

Real (1/10) Real (2/10) Real (0/10) Real (4/10)

Synthetic (9/10) Synthetic (8/10) Synthetic (10/10) Synthetic (6/10)
Figure 5: Top-4 break patterns (from left to right) for user study, where (1/10) means the 1 user votes this layout
can be easily cleared among the total of 10 users.

number 1 in the other). Note that all balls can be
matched for layouts under the same break pattern. Then,
for a generated layout, we compute the average distance
from its 5 nearest layouts among the real layouts under
the same break pattern. Similarly, we compute the
average distance for each real layout (from all other real
layouts) under the same break pattern. We measure the
relative rank of the average distance of the generated
layout among all average distances, and the results are
shown in Table 4. We observe that the generated layouts
are in general quite similar to real ones, e.g., with the
relative rank below 0.5 in most cases, where the relative
rank (i.e., a normalized version of mean rank) below 0.5
means the layout we generated exceeds the similarity of
more than half of the real layouts.
User study. In Figure 5, we conduct a user study to
show the quality of the generated layouts. We randomly
select a real layout from G2 and a synthetic layout from
G3 that involve the four most frequent break patterns.
We invite 10 volunteers with strong billiards knowledge
to annotate which layout is more likely to be cleared. We
first spend some time introducing some background to
the volunteers so that they can understand these images
in Figure 5. Note that the volunteers do not know which
are real or synthetic. We observe BLGAN generates
the layouts that can be easily cleared, i.e., the synthetic
layouts get 82.5% votes while real layouts get only 17.5%
votes from users. Take break pattern 1 (Ball 4 missed)
as an example, we observe the synthetic layout can be

easily cleared since Ball 1 (yellow) can be easily potted
to the pocket at the bottom left corner at the beginning,
and Ball 2 (blue) is located near the path of the cue ball.

6 CONCLUSION
In this paper, we contribute a publicly available billiards
layout dataset, which includes break shot layout data,
trajectory data of strikes, details of strikes, etc. On the
dataset, we investigate a few tasks including prediction
and generation based on the break shot layout data
and the similarity search based on the trajectory data.
Extensive experiments are conducted on the collected
dataset, which verify the usefulness of the dataset and
also the proposed methods for the tasks on the dataset.
We anticipate that our paper and dataset will boost
more data analysis on billiards sport, including but not
limited to player performance analysis, tactics discovery,
similar layout retrieval, etc.

Acknowledgments: The project is partially supported
by the funding from HKU-SCF FinTech Academy and
the ITF project (ITP/173/18FP). Zheng Wang acknowl-
edges the support by the National Research Foundation,
Singapore under its AI Singapore Programme (AISG
Award No: AISG-PhD/2021-08-024[T]). This research is
also supported by the Ministry of Education, Singapore,
under its Academic Research Fund (Tier 2 Award MOE-
T2EP20220-0011 and Tier 1 Award RG20/19 (S)) and by
the Nanyang Technological University Start-Up Grant

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited116

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

from the College of Engineering under Grant M4082302.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not reflect the views of the Ministry of Education,
Singapore. The authors would also like to thank Pui
Wah Kong and Jingwen Pan for helpful discussions.

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-
Fei, and S. Savarese. Social lstm: Human trajectory
prediction in crowded spaces. In CVPR, 2016.

[2] R. Aoki, R. M. Assuncao, and P. O. Vaz de Melo. Luck
is hard to beat: The difficulty of sports prediction. In
SIGKDD, pages 1367–1376. ACM, 2017.

[3] C. Archibald, A. Altman, and Y. Shoham. Analysis
of a winning computational billiards player. In IJCAI,
volume 9, pages 1377–1382, 2009.

[4] P. Bachman and D. Precup. Data generation as
sequential decision making. arXiv, 2015.

[5] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe,
J. Pineau, A. Courville, and Y. Bengio. An actor-critic
algorithm for sequence prediction. arXiv, 2016.

[6] T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song,
and Y. Bengio. Maximum-likelihood augmented dis-
crete generative adversarial networks. arXiv, 2017.

[7] T. Decroos, J. Van Haaren, and J. Davis. Automatic
discovery of tactics in spatio-temporal soccer match
data. In SIGKDD, pages 223–232. ACM, 2018.

[8] W. Fedus, I. Goodfellow, and A. M. Dai. Maskgan:
better text generation via filling in the_. arXiv, 2018.

[9] R. J. Frank, N. Davey, and S. P. Hunt. Time series
prediction and neural networks. JIRS, 2001.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial networks. arXiv, 2014.

[11] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang.
Long text generation via adversarial training with
leaked information. In AAAI, volume 32, 2018.

[12] C. Ju, Z. Wang, C. Long, X. Zhang, and D. E. Chang.
Interaction-aware kalman neural networks for trajectory
prediction. In IEEE IV, pages 1793–1800. IEEE, 2020.

[13] M. J. Kusner and J. M. Hernández-Lobato. Gans for
sequences of discrete elements with the gumbel-softmax
distribution. arXiv, 2016.

[14] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion
convolutional recurrent neural network: Data-driven
traffic forecasting. ICLR, 2018.

[15] K. Lin, D. Li, X. He, Z. Zhang, and M.-T. Sun.
Adversarial ranking for language generation. NIPS,
2017.

[16] Z. Lin, J.-S. Yang, and C. Yang. Grey decision-making
for a billiard robot. In IEEE SMC, 2004.

[17] S. Mathavan, M. Jackson, and R. M. Parkin. A
theoretical analysis of billiard ball dynamics under
cushion impacts. JMES, 224(9):1863–1873, 2010.

[18] W. Nie, N. Narodytska, and A. Patel. Relgan: Rela-
tional generative adversarial networks for text genera-
tion. In ICLR, 2018.

[19] J. W. Pan, J. Komar, S. B. K. Sng, and P. W. Kong.
Can a good break shot determine the game outcome in
9-ball? Frontiers in psychology, 12, 2021.

[20] N. I. Sapankevych and R. Sankar. Time series prediction
using support vector machines: a survey. CIM, 2009.

[21] L. Sha, P. Lucey, Y. Yue, P. Carr, C. Rohlf, and
I. Matthews. Chalkboarding: A new spatiotemporal
query paradigm for sports play retrieval. In IUI, pages
336–347. ACM, 2016.

[22] K. Skianis, G. Nikolentzos, S. Limnios, and M. Vazir-
giannis. Rep the set: Neural networks for learning set
representations. In AISTAT, 2020.

[23] M. Smith. Running the table: An ai for computer
billiards. In Proceedings of the national conference on
artificial intelligence, volume 21, page 994. AAAI, 2006.

[24] M. Smith. Pickpocket: A computer billiards shark.
Artificial Intelligence, 171(16-17):1069–1091, 2007.

[25] Z. Wang, C. Long, and G. Cong. Similar sports
play retrieval with deep reinforcement learning. IEEE
TKDE, 2021.

[26] Z. Wang, C. Long, G. Cong, and C. Ju. Effective and
efficient sports play retrieval with deep representation
learning. In SIGKDD, pages 499–509, 2019.

[27] A. S. Weigend. Time series prediction: forecasting the
future and understanding the past. Routledge, 2018.

[28] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

[29] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Se-
quence generative adversarial nets with policy gradient.
In AAAI, volume 31, 2017.

[30] Y. Yue, P. Lucey, P. Carr, A. Bialkowski, and
I. Matthews. Learning fine-grained spatial models for
dynamic sports play prediction. In ICDM, pages 670–
679. IEEE, 2014.

[31] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos,
R. Salakhutdinov, and A. Smola. Deep sets. NIPS,
2017.

[32] C. Zhang, D. Song, C. Huang, A. Swami, and N. V.
Chawla. Heterogeneous graph neural network. In
SIGKDD, pages 793–803, 2019.

[33] Q. Zhang, Z. Wang, C. Long, and S. M. Yiu. On predict-
ing and generating a good break shot in billiards sports
(supplementary materials). https://zhengwang125.
github.io/paper/SDM_Supplementary.pdf, 2022.

[34] Y. Zheng, X. Xie, W.-Y. Ma, et al. Geolife: A
collaborative social networking service among user,
location and trajectory. IEEE DEB., 33(2):32–39, 2010.

[35] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong,
and W. Zhang. Informer: Beyond efficient transformer
for long sequence time-series forecasting. arXiv, 2020.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited117

D
ow

nl
oa

de
d

05
/1

9/
22

 to
 1

55
.6

9.
14

9.
17

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://zhengwang125.github.io/paper/SDM_Supplementary.pdf
https://zhengwang125.github.io/paper/SDM_Supplementary.pdf

	INTRODUCTION
	RELATED WORK
	DATASETS
	TASKS
	Layout Prediction with BLCNN
	Layout Generation with BLGAN

	EXPERIMENTS
	Evaluation on the Prediction Task
	Evaluation on the Generation Task

	CONCLUSION

