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Abstract—With the proliferation of commercial tracking systems, sports data is being generated at an unprecedented speed and the
interest in sports play retrieval has grown dramatically as well, where a play corresponds to a fragment of a game. Existing solutions for
similar play retrieval usually assume that a database of plays are materialized, which, however, is not well aligned with the practice that
data is stored in units of game. In this paper, we propose to search for similar plays directly from a database of games. We tackle three
challenges of the task, namely (1) how to measure the similarity between two plays, (2) how to efficiently find a similar play to a query
play within a game, and (3) how to efficiently find a similar play within a database of many games. For the first challenge, we propose a
deep learning approach called play2vec to learn the representations of sports plays. play2vec is robust against noise and runs in linear
time. For the second challenge, we develop a suite of algorithms including two based on reinforcement learning, which use learned
policies for deciding where to split a game to generate candidate plays. For the third challenge, we develop a method called
ScoreSearch based on deep metric learning, which is able to prune games from being searched for better efficiency. We conduct
experiments on real-world soccer match data to evaluate the techniques developed in this paper.

Index Terms—similar play retrieval; deep representation learning; deep reinforcement learning; play2vec; trajectory and sequence
similarity; mining sub-trajectories
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1 INTRODUCTION
Nowadays, it becomes a common practice to track the
moving agents in a sports game (e.g., the players and the
ball in a soccer game) using cameras and/or GPS devices.
For example, the SportVU system by STATS LLC, which
is an optical tracking system based on cameras, has been
used by professional sports leagues such as France’s Ligue
de Football Professionnel (LFP) and American National
Basketball Association (NBA). The data collected by these
tracking systems can be represented as the trajectories of the
players and the ball in a game, i.e., it embeds both spatial
and temporal features of a game. Hence, it is usually termed
as spatiotemporal sports data and has been used in many
sports analytics tasks such as team formation detection [1],
[2], movement pattern mining [3], [4], tactics discovery [3],
score prediction [5], [6], and similar play retrieval [7].

A play corresponds to a fragment of a game and has
its duration varying from seconds to minutes. Similar play
retrieval is a process of finding those plays from a database,
which are similar to a query play. It is widely used in
some emerging sports applications such as ESPN and Team
Stream to recommend similar plays to sports fans. Besides,
it could help sports club managers and coaches to improve
team tactics when preparing for an upcoming match [3].

Existing studies on similar play retrieval usually assume
that some candidate plays called data plays are stored in a
database for query processing [7], [8]. For example, in the
proposal [7], all possible fractions of a game are materialized
as data plays, whose duration fall in a range, e.g., from 1s to
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5s, and are stored in a database for query processing. While
this strategy is simple, it is not an ideal solution. First, with
a small range used for materializing data plays, it restricts
the space of possible plays for query processing, i.e., only
those with the length in the small range are considered.
When the length of a query play is outside the range, those
plays that are similar to the query play may be missed (since
they should have similar lengths as the query play but are
not materialized). Second, with a very large range, more
data plays will be stored in the database, and the cost of
both materializing all possible data plays and searching for
similar data plays would be increased accordingly.

In this paper, we propose a new strategy, namely we do
not materialize data plays from games, but search games
directly for plays that are similar to a given query play.
Specifically, given a database of games and a query play, the
problem is to find those fragments of the games (i.e., plays),
which are the most similar to the query play. Different from
existing studies [7], [8], which assume a database of plays,
each as a whole being considered, this problem takes as input
a database of games, each with its fragments being considered.
This problem setting has two advantages over existing ones.
First, the materialization of plays is no longer necessary and
thus the specification of a duration range is avoided. Second,
this is more aligned with real application scenarios, since
the raw spatiotemporal sports data is collected in the units
of games, but not plays.

We call this problem of searching for plays from a
database of games, which are similar to a query play, similar
sub-game retrieval or simply similar play retrieval (SimPlay).
There are three challenges in solving the SimPlay problem:
(1) how to measure the similarity between two plays (given that
a play has a complex structure), (2) how to search for sub-
games (plays) from a specific game, which are similar to a query
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play (given that a game involves many possible plays), and (3)
how to search over a databases of many games for plays, which
are similar to a query play (given that there are usually many
games in the database). In this paper, we develop techniques
to solve these challenges, as explained in Sections 1.1, 1.2,
and 1.3, respectively.

1.1 Measure Similarity Between Two Plays
In our prior study [8], we propose to learn representations of
plays in a low-dimensional space using deep models, which
we call play2vec, such that the (Euclidean) distances in the
space capture the similarities among the plays well. The core
idea of our approach is to treat a play as a sequence of play
segments with uniform durations and then design a denois-
ing sequential encoder-decoder (DSED) model for extracting
a feature vector from the sequence. play2vec has obvious
advantages over existing ones [7] in the aforementioned
three aspects. Regarding the effectiveness, our method is
based on the popular encoder-decoder deep model which
is widely known to perform well in extracting features
from sequential data. Regarding the efficiency of computing
the similarity of two plays, our method runs in O(n + d)
time while existing ones have time complexities at least
O(n2), where n is the length of the longest trajectory in a
play and d is the size of a learned feature vector which is
small. Regarding the robustness, our method involves two
mechanisms to deal with sampling errors and measurement
errors. First, in the step of mapping play segments to tokens,
a grid is used such that it is not sensitive to errors. Second,
in the encoder-decoder model, the data is first injected with
some noises and then denoised for training which would
help mitigate the problems caused by errors.

1.2 Search Similar Play Within a Game
A simple method is to enumerate all possible plays of a
game, compute the similarity between each play and the
query play, and return the play with the greatest similar-
ity. For better efficiency, we borrow the ideas of existing
techniques that have been proposed for the sub-trajectory
similarity search problem in our prior study [9] for searching
similar plays within a game. First, we design an incremental
strategy for computing the similarities between different
plays of a game and the query play. The resulting algorithm
is still an exact one and we call it ExactS. Second, we design
an approximate algorithm, which only considers those plays
that have similar length as the query play. We call this
algorithm SizeS. Compared with ExactS, SizeS explores a
smaller search space and thus has better efficiency. Third,
to further improve the efficiency, we propose two types of
algorithms, which share the idea of splitting a game into
plays and returning the most similar play to the query play.
The first type uses heuristics for deciding where to split a
game and the second type models the process of splitting a
game as one of Markov decision process (MDP) and employs
reinforcement learning (RL) for finding policies for decision
making. These splitting-based algorithms consider an even
smaller space of plays to explore and thus have the best
efficiency. Among these splitting-based algorithms, the RL
based algorithms provide better effectiveness than those
based on heuristics since the the policies learned via RL are
more intelligent than the heuristics that are human-crafted.

1.3 Search Similar Play Within a Database of Games

An intuitive solution to solve the SimPlay problem is to
scan the games in the database, and for each one, com-
pute its most similar play (using the one of the methods
presented in Section 4) and update the most similar play
found so far. Nevertheless, there are usually many games
in a database in practice, and thus this method would not
meet the efficiency requirement for real applications. In this
paper, we develop a deep metric learning based technique
for determining the order of the games in a database for
searching the most similar play within a game and ignoring
those that are behind others for better efficiency. Specifically,
we define a score for each game given a query play to be
the maximum similarity between a play of the game and
the query play. The rationale of the score is that the games
in the databases would be taken in a descending order of
their score for searching for the similar plays to a query
play. To infer the score of a game efficiently, we develop a
deep metric learning method based on triplet network [10]
to learn embeddings of games such that the order based on
their scores is preserved. When performing the similar play
retrieval, we first only consider a fraction r of the games
with the top scores for searching for the most similar play,
where r ∈ (0, 1] is a user parameter for controlling the trade-
off between effectiveness and efficiency.

1.4 Main Contributions and Organization.

This paper extends our prior work [8], which proposes the
play2vec measurement (presented in Section 3), with the
following new contributions.

1) We propose a new problem of searching similar plays
for a given query play from a database of games.
This is different from existing studies, which assume
a database of materialized plays, and is more aligned
with real applications. (Section 2)

2) We develop a suite of algorithms for searching the play
of a game, which is the most similar to a query play.
Among them, two use polices learned via reinforcement
learning for forming candidate plays. They correspond
to adaptions of the techniques in [9], which search
for similar sub-trajectories, for searching similar plays
within a game. (Section 4)

3) We develop a deep metric learning based method for
deciding the order of searching the games in a database
and searching only a fraction r of the games that are
before others, where r ∈ (0, 1] is a user parameter for
controlling the trade-off of effectiveness and efficiency.
(Section 5)

4) We perform extensive experiments on real-world soccer
data. The results show that (1) our play2vec mea-
surement consistently outperforms the state-of-the-art
in terms of effectiveness and runs faster than exist-
ing methods by over one order of magnitude; (2) the
splitting-based algorithms achieve the best efficiency
and the two RL based algorithms are more effective
than other approximate algorithms and run fast; and (3)
the deep learning based method improves the efficiency
of similar sports play retrieval significantly with some
slight effectiveness degrades. (Section 6)
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2 PROBLEM DEFINITION
We model a sports game by the movements of the objects in-
volved in the game (e.g., in a soccer play, the objects include
22 players from two teams and also a ball). The movement
of an object is usually captured by sampling its locations
at a certain frequency with tracking technologies such as
those based on GPS devices. As a result, the movement of an
object corresponds to a sequence of time-stamped locations,
which is called a trajectory. A trajectory has its form of
(x1, y1, t1), (x2, y2, t2), ..., where (xi, yi) is the ith location
and ti is the time stamp of the ith location. Therefore, a
game corresponds to a set of multiple trajectories.

Given a game P =< p1, p2, ..., pn > and 1 ≤ i ≤ j ≤ n,
let P[i, j] denote the portion of P that starts from the
ith frame and ends at the jth frame, i.e., P[i, j] =<
pi, pi+1, ..., pj >, where each frame pi contains multiple
sampled locations of the players and the ball at that time
stamp. We say that P[i, j] is a play of P for any 1 ≤ i ≤ j ≤
n. There are in total n(n+1)

2 plays in P . Note that any play
of a game P corresponds to a (shorter) game itself.

Problem definition. Suppose we have a database of many
games. The problem is to search the portion of a game (i.e.,
a play) in the database, which is the most similar to a query
play. We call this problem SimPlay. The SimPlay problem
relies on a similarity measurement for two plays, which will
be introduced in Section 3.

We note that a more general query is to find the top-
k similar plays to a query play, which reduces to the user’s
query as described above when k = 1. In this paper, we stick
to the setting of k = 1 since extending the techniques for the
setting of k = 1 to general settings of k is straightforward.
Specifically, we can adapt the techniques in this paper to
general settings of k by simply maintaining the kth most
similar play and updating it when a play that is more similar
than it is found.

3 SIMILARITY MEASUREMENT FOR PLAYS

Given a database of plays D (note that a game can also be
regarded a play), we aim to learn a vector representation
v ∈ Rd for each play P ∈ D in a d-dimensional space such
that the dissimilarities among plays are well captured by the
Euclidean distances in the d-dimensional vector space, i.e.,
for any two plays, if they are similar, the distance between
their vectors would be small.

In this part, we introduce a deep learning method,
play2vec, which was introduced in our prior work [8], for
learning vector presentations of plays. The core idea is that
we break each play into a sequence of non-overlapping
segments of a fixed duration, each called a play segment,
and then design an encoder-decoder model to extract the
features from the sequence as a vector. Specifically, our
method first builds a corpus V based on all play segments
(Section 3.1), then adopts the Skip-Gram with Negative
Sampling (SGNS) model [11] for learning distributed rep-
resentations of the tokens in V (Section 3.2), and eventually
glues all distributed representations of the play segments
in a play, yielding a vector representation v using the
Denoising Sequential Encoder-Decoder (DSED) model that
is designed in this paper (Section 3.3).
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(a) soccer pitch (b) segment matrixM
Fig. 1. Mapping a play segment to a matrix. The soccer pitch is divided
into 5×7 grid map. There are two trajectories with the color red and blue
in the soccer pitch [8].

3.1 Building a Sports Corpus
First, we introduce a process of mapping a play segment to a
binary matrix with the help of a grid. Specifically, we divide
the pitch into a grid with equal cell size γ, for which we
would have a corresponding matrix called segment matrix,
i.e., each cell in the grid has a corresponding entry in the
matrix. Given a play segment, which consists of a set of
trajectories, we set to 1 all those entries whose correspond-
ing cells are traveled through by the trajectories and 0 the
remaining entries. An example is shown in Figure 1 for
illustration. Note that in this example, the 5 × 7 grid map
is determined by the cell size, which is set empirically in
Section 6.2.4.

Since each segment matrix has binary values only, the
number of possible segment matrices is limited. A simple
strategy is to create one unique token for each possible seg-
ment matrix. Nevertheless, with this strategy, the resulting
corpus could be big, which may affect the effectiveness of
the representation learning afterwards. Thus, we propose to
scan the segment matrices one by one and for each segment
matrix, we create a new token only if it is dissimilar from
those segment matrices that have been scanned to a certain
extent, where we use the Jaccard index for measuring the
similarity between two segment matricesM andM′, which
is defined as follows.

J (M,M′) :=
m11

m01 +m10 +m11
, (1)

where m11 means the total number of attributes where M
andM′ both have a value of 1, m01 (or m10) means the total
number of attributes whereM is 0 (or 1) andM′ is 1 (or 0).

The process of building sports corpus is as follows. It
first initializes two variables: V which is the target sports
corpus and id which is the index of tokens. It then has a
for loop of scanning the play segments. Within the loop,
it first computes the segment matrix for the play segment
currently being processed. Then, it inserts the first segment
matrix and its corresponding token into V . It then finds
the pair (M′, T ′) such that M′ is the most similar to M
among those maintained in V under the Jaccard index. If
the similarity is above a threshold φ, M is assigned with
the same segment token as M′; otherwise, M is assigned
with a new segment token.

3.2 Learning Distributed Representations
In this part, we introduce a method for embedding the play
segments (or their corresponding tokens) as d′-dimensional
real-valued vectors. Inspired by the success of word2vec
techniques in natural language processing, we adopt the
Skip-Gram with Negative Sampling (SGNS) model for this
task. The effectiveness of a SGNS model depends on how
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good the context of a token is modeled. The segment tokens
occurring in the same context tend to have similar sports
scenes. Hence, we use the consecutive segment tokens after
and before a token as the forward-looking and backward-
looking context of the token, respectively.

In this part, we abuse the notation V to denote the set
containing all segment tokens of the play segments involved
in a database of plays. Consider a play P which involves
L play segments. Correspondingly, there is a sequence of
L segment tokens which we assume are T1, T2, . . . , TL.
Then, the m-size window context of a segment token Tt
(m + 1 ≤ t ≤ L − m), denoted by cm(Tt), corresponds
to < Tt−m, . . . , Tt−1, Tt+1, . . . , Tt+m >, where we say Tt is
a target segment token and each token in cm(Tt) a context
segment token. Note that a segment token could be a target
one and also a context one (with others as the target ones),
i.e., a segment token has two types of roles, namely a target
segment token and a context segment token. Given a target
token T and a context token C, we say the token-context
pair (T , C) is positive if C ∈ cm(T ) and negative otherwise.
Considering that a segment token has two types of role, we
define for each segment token a vector vT ∈ Rd

′
for cases it

corresponds to a target segment token and a vector vC ∈ Rd
′

for cases it corresponds to a context segment token, where d′

is the embedding dimension. We aim to learn these vectors
such that we could infer those context segment tokens from
a target one with the maximum probability.

We explain the training data and also the loss next. The
training data consists of a set of training samples. Each
training sample consists of one positive token-context pair
(T , C) (i.e., C ∈ cm(T )) and k negative pairs (T i, C), where
T i for i = 1, 2, ..., k is drawn from a segment token distri-
bution Q(T ). Specifically, Q(T ) is a α-smoothed unigram
distribution,

Q(T ) :=
f(T )α∑
T ′∈V f(T ′)α

, (2)

where α ∈ [0, 1] and f(T ) is the frequency of the segment
token T appearing in the corpus.

The loss is explained as follows. For a token-context pair
(T , C), we model the probability that the pair is positive
as σ

(
(vT )T · vC

)
(i.e., a sigmoid function is used with its

input as the dot product between the vectors of the segment
tokens) and the pair is negative as 1 − σ

(
(vT )T · vC

)
. We

then define the loss over one training sample using negative
log probabilities as follows.

L(T , C, T i) := − log σ
(

(vT )T ·vC
)
−

k∑
i=1

log σ
(
−(vT i)T ·vC

)
,

(3)
where (T , C) is the positive token-context pair and (T i, C),
for 1 ≤ i ≤ k, are the k negative pairs in the training sample.
The overall loss function L is defined by aggregating the
losses on all training samples.

The SGNS of the segmentation tokens yields a dis-
tributed representation vT for each T ∈ V . The learn-
ing process starts from a random vector as the initialized
embedding, and it will be continuously updated by the
stochastic gradient descent to push the target segment token
close to the context in the positive pairs and away from the
context in the negative pairs.

3.3 Bottom-up Gluing
In this section, we aim to glue the distributed represen-
tations of the segment tokens up together to achieve a
comprehensive representation of the play. We propose a
new algorithm framework called the Denoising Sequential
Encoder-Decoder (DSED). The intuition is that we try to
maximize the probability of recovering the most likely real
(or clean) tokens from the corrupted initial inputs. For a
given play segment and its corresponding token T , we
generate a corrupted version of the token, denoted by T̃ , as
follows. We scan the locations of the trajectories contained
in the play segment time stamp by time stamp, and at each
time stamp, we keep the locations with a pre-set probability
(and drop the locations with one minus the probability and
continue to the next time stamp) and in the case we keep
the locations, we sample for each location a noise following
a normal distribution N (0, 1) and add the noise into the
location. We then get a new set of tokens based on the
corrupted trajectories.

The architecture of the model is presented in Figure 2. We
define the encoding hidden representation henc

t at each time
step t, i.e. henc

t := LSTMenc
θ (vT̃t ,h

enc
t−1). The encoding

hidden vector at the last time step henc
last denotes the target

representation v and is used to be the hidden vector of the
decoder at the first step, i.e. hdec

0 := henc
last. And EOS is the

special token that signals the first step input of the decoding.
Also, the decoding hidden representation hdec

t is computed
based on the distributed representation of the clean token
vTt−1

and the hidden vector hdec
t−1 from the previous time

step, i.e., hdec
t := LSTMdec

θ′ (vTt−1
,hdec

t−1). Note that LSTM
is chosen as the computational unit in our model since some
existing studies show that LSTM outperforms GRU in tasks
requiring modeling long-distance relations [12].

Eventually, we predict vpredTt by the softmax function
from the decoding hidden representation hdec

t at each time
step t,

vpredTt :=
exp(W T · hdec

t + b)∑
v∈V exp(W

T
v · hdec

t + bv)
, (4)

where W ∈ R|h
dec
t |×|V|, b ∈ R|V|, Wv ∈ R|h

dec
t | and bv ∈ R

are the weights and bias represented by η, and softmax is the
activation function. We define the loss function L(vT ,v

pred
T )

as the average sequence cross-entropy,

L(vT ,v
pred
T ) :=

1

L
·
L∑
i=1

H
(
vTi ,v

pred
Ti

)
, (5)

where H is the cross-entropy operator. Parameter θ of the
encoding function LSTMenc

θ , θ′ of the decoding function
LSTMdec

θ′ and η are trained to minimize loss L(vT ,v
pred
T )

over a training set with the Adam stochastic gradient de-
scent method.

The DSED model works as follows. It first builds the
sports corpus V , which contains segment tokens T . During
the iterative training process, it first maps the plays P to
a sequence of segment tokens < T1, T2, . . . , TL > of length
L. Then, it constructs for each token Ti a corrupted version
T̃i and learns the distributed representations vTi and vT̃i
for Ti and T̃i, respectively. Next, it gets the reconstruction
pairs (vpredT ,vT ), which are computed by the encoder and
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Fig. 2. Denoising Sequential Encoder-Decoder Model. Take the
sequence of the corrupted tokens < ˜Tt−2, ˜Tt−1, T̃t > as an
example, where EOS is a special token indicating the end of
the input [8].

decoder components of the learning model and uses an opti-
mizer such as Adam stochastic gradient descent to optimize
the parameters.

3.4 Complexity Analysis
The time complexity for computing the similarity between
two plays consists of two parts, namely one for learning the
representations of the plays and the other for computing the
distance between the learned representations in the form of
vectors in the d-dimensional space. The former costs O(n)
time, where n is the length of the longest trajectory involved
in the plays, and we explain as follows: (1) it takes O(n) to
convert a query play to a sequence of L segment matrices;
(2) it takes O(|V |L) time to map the segment matrices to
their corresponding segment tokens; (3) it takes O(L) to
map the segment tokens to their corresponding vectors; and
(4) it takes roughly O(n) time to fed the vectors to the DSED
model and obtains the target vector representation of the
play. Since |V | could be regarded as a constant and L is
bounded by n, we know this process takes O(n) time. And
the latter costs O(d) which is obvious. Hence, the overall
time complexity is O(n+ d).

4 SIMILAR PLAY SEARCH WITHIN A GAME

In this section, we introduce a suite of algorithms for the
process of searching for the play of a game, which is the
most similar to a query play. They include (1) one exact algo-
rithm called ExactS (Section 4.1), (2) one approximate algo-
rithm, called SizeS, with a tunable parameter to control the
trade-off between effectiveness and efficiency (Section 4.2),
(3) five splitting-based algorithms including three based on
heuristics (Section 4.3) and two on reinforcement learning
(Section 4.3). These algorithms were originally proposed for
searching similar sub-trajectories in a single trajectory [9].
We adapt these algorithms for searching similar plays,
which comprise multiple trajectories, where play2vec [8] is
used for measuring the similarity between plays. The sum-
mary of the complexities of these algorithms is presented in
Table 1.

4.1 The ExactS Algorithm
A straightforward solution is to enumerate all possible plays
P[i, j] (1 ≤ i ≤ j ≤ n) of a game P and compute the simi-
larity between each P[i, j] and Pq , and then return the play

TABLE 1
Time complexities of SimPlay within a game.

Algorithms Time complexity
ExactS O(n2)
SizeS O((m+ ξ) · n)
PSS, POS, POS-D
(Splitting-based Algorithms) O(n)

RLS, RLS-Skip
(Learning-based Algorithms) O(n)

with the greatest similarity. We further adopt an incremental
strategy for computing the similarities, i.e., it initializes
the similarity between P[i, i] and Pq and then computes
(P[i, i + 1],Pq), ..., (P[i, n],Pq) sequentially and incremen-
tally (note that the latent representation of P[i, j + 1] can
be computed in O(1) time based on that of P[i, j] by going
through an LSTM block once). This corresponds to an exact
solution because it would traverse all possible candidate
plays (i.e., n(n+1)

2 ones) and runs in O(n2) time.

4.2 The SizeS Algorithm
Given that the sports data is usually uniformly sampled,
the enumeration of all possible plays as ExactS does is
too conservative. Therefore, we further design an algorithm
called SizeS, which only considers those plays with the
length similar to that of the query play. Specifically, we
introduce a parameter ξ and consider only those plays with
the length within the range [m− ξ,m+ ξ], where m denotes
the length of the query play and ξ ∈ [0, n − m]. The time
complexity of SizeS is O((ξ + m) · n) when the similarities
are computed incrementally as it is done by ExactS.

4.3 Splitting-based Algorithms
An intuitive idea to push the efficiency further up is to
explore fewer plays than SizeS does. We design a series of
algorithms, which share the idea of splitting a game into
several plays and returning the one that is the most similar
to the query play. These algorithms use different heuristics
for deciding where to split the game and are presented as
follows.
(1) Prefix-Suffix Search (PSS). The PSS algorithm adopts a
greedy heuristic. Specifically, it scans the frames of a game
P in the order of p1, p2, ..., pn. When it scans pi, it computes
the similarities between the two plays that would be formed
if it splits P at pi, i.e., P[h, i] (i.e., the prefix) and P[i, n] (i.e.,
the suffix), and the query Pq , where ph denotes the frame,
at which the last split happened if any and the first frame
p1 otherwise. In particular, for the similarity between the
suffix and the query play, it is approximated as that between
their reversed versions, where a reversed version of a play
< p1, p2, ..., pn > corresponds to < pn, ..., p2, p1 >. With
this strategy, the similarities of both the prefixes and the
suffixes from the query play can be computed incrementally
in O(1) time: (1) the similarity of the prefix ending at pi
can be computed incrementally based on that of the prefix
ending at pi−1 and (2) the similarity of the reversed version
of the suffix starting at pj can be computed incrementally
based on that of the reversed version of the suffix starting
at pj+1. PSS performs a split operation at pi if any of these
two similarities are larger than the best-known similarity
and updates it if so; otherwise, it continues to scan the
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next frame. Finally, it returns the play with the best-known
similarity. The time complexity of PSS is O(n) since at each
frame, it takes O(1) to compute the similarities of the prefix
and the suffix (reversed version).
(2) Prefix-Only Search (POS). In PSS, when it scans a frame
pi, it considers two plays, i.e., a prefix P[h, i] and a suffix
P[i, n]. An alternative is to consider the prefix P[h, i] only
- one argument is that the suffix P[i, n] might be destroyed
when further splits are conducted. A consequent benefit is
that the time cost of computing the similarity of the suffix
would be saved. We call this algorithm the POS algorithm.
POS has the same time complexity as PSS though the former
runs faster in practice.
(3) Prefix-Only Search with Delay (POS-D). In POS, it
performs a split operation when a better play is found.
This looks a bit rush and may prevent a better play from
being formed by extending it with a few more frames. Thus,
we design a variant of POS, called POS-D. Whenever a
prefix is found to be more similar to the query than the
best play known so far, POS-D continues to scan D more
frames and splits at one of these D + 1 frames such that
the corresponding prefix is the most similar to the query
play with this delay mechanism, the time complexity of the
algorithm does not change though in practice, it would be
slightly higher.

4.4 Learning-based Algorithms

The effectiveness of splitting-based algorithms relies on the
quality of their heuristics. In order to find a play with high
similarity, it needs to perform split operations at appropriate
frames such that the plays that are formed are similar to the
query play. We observe that the process of splitting a game
into plays can be regarded as a typical sequential decision
making process, i.e., it sequentially scans the frames in a
play and for each frame, it makes a decision on whether
or not to perform a split operation at the frame. We thus
model this process as a Markov decision process (MDP) [13],
adopt a deep-Q-network (DQN) reinforcement learning
method [14] to learn an optimal policy for the MDP, and
then develop two algorithms based on the learned policy
for splitting a game into plays, namely RLS and RLS-Skip.
We note that reinforcement learning (RL) has been utilized
to solve other algorithm problems, such as classic NP-hard
problems [15], bipartite graph matching [16], similar sub-
trajectory search [9], etc.

We first introduce the MDP as follows. A MDP consists
of four components, namely states, actions, transitions, and
rewards.
• States. We denote a state by s, which captures the envi-
ronment that is taken into account for decision making by
an agent. Specifically, when it scans the frame pt, we define
the current state as a pair (Θbest,Θpre), where Θbest is the
largest similarity of a play found so far, Θpre is the similarity
of the prefix P[h, t], where ph denotes the last frame where
a split operation happened if any and p1 otherwise. As
could be noticed, the state captures the information about
the query play, the game, the frame where the last split
happened, and the frame that is being scanned, etc. Note
that we ignore the similarity of the suffix in a state based on
empirical findings.

• Actions. We denote an action by a, which is a possible
decision that can be made by the agent. We define two
actions, namely a = 1 meaning to perform a split operation
at the frame that is being scanned, and a = 0 meaning to
move on to scan the next frame.
• Transitions. A transition means that the state changes
from one to another once an action is taken. Specifically, in
the process of splitting a game, given a current state s and
an action a to be taken, we would observe the next state
s′ by maintaining the current best Θbest and computing the
similarity of the prefix Θpre incrementally.
• Rewards. We denote a reward by r, which is associated
with a transition and corresponds to some feedback indicat-
ing the quality of the action that causes the transition. We
define the reward associated with the transition from state s
to state s′ after action a is taken as (s′.Θbest − s.Θbest). We
note that this reward definition is consistent with the goal
of finding the play that is the most similar to the query play.
To see this, let r1, r2, ..., rN−1 denote the rewards received
at the states s1, s2, ..., sN−1, respectively. Then, when the
future rewards are not discounted, we have

Σtrt = Σt(st.Θbest−st−1.Θbest) = sN .Θbest−s1.Θbest (6)

where sN .Θbest corresponds to the similarity of the play
returned and s1.Θbest corresponds to the best known simi-
larity at the beginning, i.e., 0. That is, maximizing the accu-
mulative rewards is equivalent to maximizing the similarity
between the play to be found.

The core problem of a MDP is to find an optimal pol-
icy for the agent, which corresponds to a function π that
specifies the action that the agent should choose when at a
specific state so as to maximize the accumulative rewards. In
our MDP, the state space is a three dimensional continuous
one, and thus we adopt a Deep-Q-Network method [14].
Specifically, we use the deep Q learning with replay mem-
ory [14] for learning the policy.

We next describe two learning-based algorithms RLS and
RLS-Skip as follows.
(1) Reinforcement Learning based Search Algorithm
(RLS). RLS is same as POS except that it uses a policy
learned via DQN instead of human-crafted heuristics for
making decisions on where to perform split operations. It
can be verified that the time complexity of RLS is O(n). To
see this, when scanning each frame, it takes O(1) time to
construct the state, which consists of two similarities that
can be maintained/computed incrementally, O(1) time to
find an action by going through a network with the state,
and O(1) time to perform the action (either splitting the
game or continuing to scan the next frame).
(2) Reinforcement Learning based Search with Skipping
(RLS-Skip). In the RLS, each frame is considered as a candi-
date location to perform a split operation. In order to push
the efficiency further up, we propose to skip some frames
from being considered as candidate locations for split op-
erations. The benefit would be immediate, i.e., the cost of
constructing states and taking actions at these frames is
saved. Motivated by this, we augment the MDP definitions
by introducing k more actions (apart from two existing ones:
performing a split operation a = 1 and scanning the next
frame a = 0), namely skipping 1 frame, skipping 2 frames,
..., skipping k frames, where k is a hyperparameter and we
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will evaluate it in the experiments. By skipping j frames
(j = 1, 2, ..., k), it means to skip frames pi+1, pi+2, ..., pi+j
and scan frame pi+j+1 next, where pi is the frame that
is being scanned. All other components of the MDP are
kept the same as those for RLS. We call this algorithm
Reinforcement Learning based Search with Skipping (RLS-
Skip). Note that RLS-Skip reduces to RLS when k = 0. In
addition, RLS-Skip has the same time complexity as RLS
and runs faster in practice.

We illustrate the RLS-Skip algorithm in Figure 3. Sup-
pose that it has learned a policy with the DQN and the hy-
perparameter k is set to 1, which implies that there are three
possible actions 0 (no split), 1 (split), and 2 (no split and skip
the next 1 frame). For simplicity, we write the Θpre=P[i,j]

as the similarity between the P[i, j] and Pq , and omit the
similarity values which are outputted by play2vec. At the
beginning, it initializes h, Pbest and Θbest. It then scans
frame p1, observes the first state s1 = (Θbest,Θpre=P[1,1])
and finds the action which is to perform a split operation
at p1. It then updates h, Θbest, and Pbest. It continues to
scan point p2, observes the second state s2 and finds the
action which is to skip the next 1 frame, i.e., p3. It keeps h
unchanged (since no splits are done) but updates Θbest and
Pbest, respectively. As a result of the skip action, it scans
frame p4 (note that the efforts for constructing the state and
taking the action at p3 are saved) and proceeds similarly for
the following frames. Finally, It terminates after scanning
frame p8 and returns P[5, 7].

5 SIMILAR PLAY SEARCH WITHIN A DATABASE OF
GAMES

An straightforward method for the SimPlay problem is
to search the most similar play from each game to the
query play (using a method introduced in Section 4) and
then return the most similar play among the found plays.
However, this method would be costly and does not meet
the efficiency requirement in practice since there are usu-
ally many games in the database. For better efficiency, we
present a method called score-based search (ScoreSearch) for
the SimPlay problem. ScoreSearch computes a score for each
game, which corresponds to an estimate of the maximum
similarity between a play of the game and the query play,
and then searches for the similar play from only a fraction
r of the games with the highest scores, where r is a user
parameter for controlling the trade-off between effectiveness
and efficiency.
Overview of ScoreSearch. We propose to define a score
for each game to reflect the maximum similarity between
a play in the game and the query play. The intuition is
that based on the scores, we can focus on a fraction of
games with the highest scores only for the SimPlay problem
since the most similar play is likely to be from one of these
games and other games can be ignored. One possible way
to compute the score of a game is to search for the most
similar play of the game to the query play (by using one of
the method in Section 4) and then return the corresponding
similarity as the score of the game. However, this solves
the problem more than necessary and would reduce to the
straightforward method of searching a similar play within
each game. A better idea is to estimate the score of a game

Algorithm 1 The ScoreSearch Algorithm
Input: Embedded vectors V of all games with the size N via

preprocessing and a query play Pq

Output: The most similar play
1: embed the query play, whose embedding is denoted by vPq ;
2: Retrieve the r ·N nearest vectors of games to Pq via a kNN

algorithm;
3: for all retrieved games do
4: find the play in the game, which is the most similar to

the query play (e.g., with RLS-Skip);
5: end for
6: return the most similar play to the query play among all

found plays;

with some light method only so that if the score is low,
the game would then be pruned for searching the similar
play. We propose a triplet network [10] based model, which
embeds games into vectors and then uses the Euclidean
distance between the vector of a game and that of the query
play as the score of the game for the query play. To train the
network, we use the maximum similarity between a play
of a game and a query play for constructing positive and
negative labels so that the learned scores capture well the
maximum similarities between plays of games and query
plays. Once the network is trained, given a query play, we
first compute the scores of all games in the database for the
query play by feeding them into the network. We can then
focus on only a fraction r of games with the highest scores
for searching for the most similar play to a query play.
Model Architecture. Figure 4 illustrates the model archi-
tecture. To train the triplet network, we randomly sample
triplets (i.e., an anchor sample as the query, a positive
sample, and a negative sample) from the dataset. For each
triplet, we use the shortest sample in the triplet as the anchor
and denote it by Pq . Among the two other samples, we
choose the one which has a larger maximum similarity be-
tween one of its plays and Pq as the positive sample P+, and
the other one as the negative sample P−. We then embed the
samples to the play2vec model, and feed the corresponding
embeddings to a triplet network. The triplet network is
with three shared feedforward neural networks, denoted as
Net(·), which computes two Euclidean distances. That is,

d+ = ||Net(Pq)−Net(P+)||2 (7)

d− = ||Net(Pq)−Net(P−)||2 (8)

where Net(Pq) (resp. Net(P+) and Net(P−)) denotes the
embedding vector of Pq (resp. P+ and P−) via the network
Net(·). The network is trained via optimizing the triplet loss
shown below:

L(Pq,P+,P−) = max{d+ − d− + δ, 0} (9)

where δ denotes a desired margin between the positive and
negative distances in the embedding space, which aims to
enlarge the gap between positive sample P+ and negative
sample P−. Empirically, we found the light architecture is
easy to train, and achieves a superior performance.

The procedure of ScoreSearch algorithm is presented
in Algorithm 1. Suppose all games have been fed to the
network and their vectors have been computed as a pre-
processing process. For a given query play, the ScoreSearch
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Initial h = 1, Pbest = ∅ and Θbest = 0
Frame State Action h Θbest Pbest

p1 s1 = (Θbest,Θpre=P[1,1]) split p1 2 Θbest=P[1,1] P[1, 1]
p2 s2 = (Θbest,Θpre=P[2,2]) skip p3 2 Θbest=P[2,2] P[2, 2]
p3

(skipped) - - - - -

p4 s3 = (Θbest,Θpre=P[2,4]) split p4 5 Θbest=P[2,4] P[2, 4]
p5 s4 = (Θbest,Θpre=P[5,5]) skip p6 5 Θbest=P[5,5] P[5, 5]
p6

(skipped) - - - - -

p7 s5 = (Θbest,Θpre=P[5,7]) split p7 8 Θbest=P[5,7] P[5, 7]
p8 s6 = (Θbest,Θpre=P[8,8]) no-split p8 8 Θbest=P[5,7] P[5, 7]

Output Pbest = P[5, 7] with Θbest

(a) SimPlay problem (b) RLS-Skip with play2vec
Fig. 3. Illustration of similar play retrieval problem and RLS-Skip algorithm with play2vec.
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Fig. 4. Overview of model architecture.

algorithm would (1) embed the query play (Line 1), (2)
retrieve a fraction r of games using a nearest neighbor
algorithm [17] (Line 2), and then (3) search the most similar
play from each of the retrieved games using one of the
algorithms presented in Section 4 (Lines 3-6).
Time Complexity Analysis. As described above, Score-
Search involves three parts, whose time complexities are as
follows. The part of (1) is O(m), where m is the length of the
query play; that of (2) is α(N), where α(N) is the time com-
plexity of a k-nearest neighbor (kNN) search algorithm on a
set ofN items (e.g., α(N) could be k·log(N) if the algorithm
in [18] is adopted); and that of (3) is O(r ·N · β(n)), where
β(n) is the time complexity of searching the most similar
play of a game of length n to the query play (e.g., if the RLS-
Skip algorithm is adopted, β(n) is O(n)). In conclusion, the
time complexity of ScoreSearch isO(m+α(N)+r·N ·β(n)).

6 EXPERIMENTS
6.1 Experimental Setup

Dataset. Our experiments are conducted on real-world soc-
cer player tracking data 1. The data consist of 7500 sequences
and each sequence contains a segment of tracking data
corresponding to actual game from a recent professional
soccer league, totaling approximately 45 games worth of
playing time and over 30 million data points, with redun-
dant and “dead” situations removed. Each segment consists
of the tracking data of three parts: 11 defense players,
11 attacking players and a ball. Each part contains (x, y)
coordinates obtained at a sampling frequency of 10Hz.
More specifically, the coordinates generally belong to the
[−52.5meters,+52.5meters] range along the x-axis, and
[−34meters, +34meters] range along the y-axis, with the

1. Data Source: STATS, copyright 2019
(https://www.stats.com/artificial-intelligence)

TABLE 2
Dataset statistics.

Statistics Frequency
#Sequences 7500

Playing Time 45 games
Data Points 30.4M

X-axis [−52.5meters,+52.5meters]
Y-axis [−34meters,+34meters]

Sampling Rate 10Hz

very center of the pitch being (0, 0). Table 2 presents the
statistics of the dataset.

Algorithms. For the play similarity measurement, we study
our proposed play2vec as well as the following four mea-
surements, namely DTW [19], Frechet [20], Chalkboard [7],
and EMDT [21]. Detailed description of these measurements
can be found in our prior work [8].

For the problem of searching for the most similar play to
a query play within a game, since it is a new problem and no
existing algorithms can be used, we evaluate the algorithms
proposed in this paper, namely ExactS, SizeS, PSS, POS,
POS-D, RLS, and RLS-Skip. Note that we did not consider
the method proposed in the work [7], which materializes
all plays of lengths from 1s to 5s, for two reasons: (1) the
range from 1s to 5s is ad-hoc and may not serve well longer
query plays and there is no clear clue about how to set the
range; and (2) the SizeS algorithm could be regarded as a
similar method to this one, which considers all those plays
with similar lengths to the query play’s, i.e., the range is
adaptive.

Parameter Setting. The default size of cells is 3 meters and
short duration of segments is 1 second in the experiments.
After building a sports corpus via the Jaccard index (the
threshold is 0.3), we got 50,465 unique tokens for our
dataset. We use a 2-layer LSTM as the computational unit in
LSTM-Encoder. The representation dimension of the learned
segment tokens and plays are set to 20 and 50 respectively.
The context window size in the distributed representation
learning is set to 5. The α-smoother is set to 3/4 following
the negative sampling in word2vec. Additionally, in the
training process, we train our model on 5k generated plays
with random noise and dropping rate and adopt Adam
stochastic gradient descent with an initial learning rate of
0.01. In order to avoid the gradient vanishing problem, a
maximum gradient norm constraint is used and set to 5.
For the parameters of baselines, we follow their strategies
described in the original papers.

For SizeS and POS-D, we use the setting ξ = 5 andD = 5
by default, respectively. We will study the effects of these
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two parameters in Section 6.3. For training the RL-based
models (i.e., RLS and RLS-Skip), we use a feedforward
neural network with 2 layers. In the first layer, we use the
tanh function with 25 neurons, and in the second layer, we
use the softmax function with 2 + k neurons as the output,
corresponding to different actions, where for RLS, we use
the setting k = 0 and for RLS-Skip, we use the setting
k = 3 by default. We will study the effect of the skipping
parameter k in Section 6.3. In the training process, the size of
replay memory for the DQN method is set at 2000. We train
our model on 25k pairs of plays chosen randomly, using the
Adam stochastic gradient descent with an initial learning
rate of 0.001. The parameter ε is set at 0.1 with decay 0.99 for
the ε-greedy strategy in the DQN method, and the reward
discount rate γ is set as 0.99.
Evaluation Platform. All the methods are implemented
in Python 3.6. The implementation of play2vec and RLS
are based on tensorflow 1.8.0. The experiments are con-
ducted on a machine with Intel(R) Xeon(R) CPU E5-1620
v2 @3.70GHz 16.0GB RAM and one Nvidia GeForce GTX
1070 GPU. The codes can be downloaded via the link 2 to
reproduce the results.

6.2 Evaluation of the play2vec Measurement
We first study the effectiveness of play2vec. The lack of
ground-truth makes it a challenging problem to evaluate
the accuracy. To overcome it, we follow three recent stud-
ies [22], [23], [24] which propose to quantify the accuracy
of trajectory similarity with Self-similarity, Cross-similarity
and KNN-similarity comparisons, respectively. There are
two frequently used parameters: noise rate (radius is set to
1 meter.) and dropping rate with varying values from 0.2 to
0.6. The two parameters are to measure the probabilities of
adding noise or dropping sampling points of each trajectory
in a play, respectively.

6.2.1 Self-similarity Comparison
In this experiment, we randomly choose 50 plays to form
the query set (denoted as Q) and 1000 plays as the target
database (denoted as D) from the dataset. For each play
P ∈ Q, we create two plays by randomly sampling 20%
points for each trajectory in the play, denoted as Pa and Pb,
and we use them to construct two datasets Qa = {Pa} and
Qb = {Pb}. Similarly, we get Da and Db from the target
database D. Then for each query Pa ∈ Qa, we compute
the rank of Pb in the database Qb ∪ Db using different
methods. Ideally, Pb should be ranked at the top since Pa
and Pb are generated from the same play P . To evaluate
the robustness of different approaches to noise, we consider
introducing two types of noises. First, we corrupt each
trajectory of each play in bothQa andQb∪Db as follows: We
randomly sample a fraction of the points (denoted by noise
rate r1) and for each sample point we distort the coordinate
values by adding Gaussian noises with a standard normal
distribution. We vary r1 from 0.2 to 0.6 and report the
mean rank of the queries. Note that the mean rank in
self-similarity evaluation is a rank-based metric defined as

1
|Qa|

∑
Pa
rank(Pb), where rank(Pb) denotes the rank of Pb

2. https://github.com/zhengwang125/SimPlay

in Qb ∪ Db for a query Pa ∈ Qa. Second, we randomly
drop a fraction of points from each trajectory of each play
in both Qa and Qb ∪ Db. We vary dropping rate r2 from
0.2 to 0.6 and report the mean rank of the queries. The
mean rank results can be found in our prior work [8]. We
observe that play2vec consistently outperforms the other
methods by a large margin as we vary the two types of
noise. We also observe that most of the methods are not
very sensitive to the noise rate except that DTW and EMDT
degrade quickly when we increase the noise rate to 0.5.
This is because the matching cost of DTW is determined by
the pairwise point-matching and errors will be accumulated
with noises. However, Frechet maintains an infimum of the
matching cost that is robust to noise changes. With regard to
Chalkboard, it splits trajectories into overlapping segments,
which can alleviate the noise interruption to some degree.

6.2.2 Cross-similarity Comparison
A good similarity measure should preserve the distance
between two plays regardless of the sampling rate or noise
interference. We use a metric from the literatures [23], [24] to
evaluate the effectiveness for Cross-similarity comparison,
namely Cross Distance Deviation (CDD) as defined below.

CDD(Pa, Pb) =
|S(Pa′(r), Pb′(r))− S(Pa, Pb)|

S(Pa, Pb)
, (10)

where S(·, ·) is a similarity measure such as DTW or Frechet;
Pa and Pb are two original plays; Pa′(r) and Pb′(r) are their
variants that are obtained by randomly dropping points (or
adding noise) with rate r. A small CDD value indicates that
an algorithm is robust and is able to preserve the original
distance well. In this experiment, we randomly select 1,000
play pairs (Pa, Pb) from the dataset. The average CDD
results can be found in our prior work [8]. We observe
that play2vec outperforms other baselines consistently for
different noise and dropping rates. Note that play2vec is
very close to the ground truth over various dropping rates
because a cell of the grid maps is considered occupied only
if one sample point falls in the cell. Therefore, play2vec can
effectively handle the low sampling issue of data.

6.2.3 KNN-similarity Comparison
In this experiment, we study the accuracy and robustness of
play2vec and the other baselines for KNN-similarity search
on plays when we vary the dropping rate or noise rate.
To circumvent the issue of lack of ground-truth, we follow
the experimental methodology that is proposed by existing
studies [22], [24]: We first randomly select 20 plays as the
query set and 500 plays as the target database, and for each
query we employ each method to find its Top-K plays as
the ground-truth of each method; Then we corrupt each
play in the target database by randomly dropping points
or adding noise, and retrieve the Top-K plays from the
corrupted database; Finally, we compare the retrieved Top-
K plays against the ground-truth to compute the precision,
i.e., the proportion of true Top-K plays among the retrieved
Top-K plays. We vary the value of K by 20, 30, 40, and vary
the dropping rate or noise rate from 0.2 to 0.6. The average
precision results can be found in our prior work [8]. We
observe that play2vec performs the best consistently.
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6.2.4 Parameter Study
We next evaluate the effect of the cell size on the effective-
ness of play2vec. Intuitively, a small cell size provides a
higher resolution of the sports scene, but it also generates
more tokens, which lead to higher training complexity and
reduce robustness. Detailed results can be found in [8]. We
observe that the performance becomes better as the cell
size grows from 1m to 3m, and drops for Cross-similarity
and KNN similarity when the cell size becomes 4m. With
the smallest cell size (1m) play2vec performs the worst.
This is probably because the high model complexity makes
it difficult to train and this is in line with our intuition.
Therefore, we set the cell size at 3 meters for the other
experiments because it offers a better robustness.

6.2.5 Efficiency Evaluation
This set of experiments is to evaluate the efficiency of dif-
ferent methods for the sports play retrieval. Detailed results
can be found in [8]. We observe that play2vec performs the
best among all methods and is over an order of magnitude
faster than the most efficient baseline Chalkboard. This is
because play2vec takes linear time to retrieve similar plays
as discussed in Section 3.4. We also notice that play2vec
scales linearly with the database size and the disparity
between them increases as the size of the target database
grows.

6.2.6 User Study
Since Chalkboard performs the best among all the baselines,
and is dedicated for similar play retrieval, we compare
play2vec with Chalkboard for play retrieval via a user study.
We randomly select 10 plays as the query set and for each
query we employ play2vec and Chalkboard to retrieve Top-
1 play from the target database, respectively. We recruited
seven volunteers with strong soccer background to annotate
the relevance of retrieved plays. We first spent 10 minutes to
get everyone understand the questions. Then, for each of the
10 queries each volunteer specifies the most relevant result
between the Top-1 result retrieved by play2vec and the Top-
1 result retrieved by Chalkboard. Note that volunteers do
not know which result is from which method. Results can
be found in [8]. We observe that play2vec performs much
better than Chalkboard for 8 out of the 10 queries. Overall,
play2vec gets 82.86% votes (over 70 votes) while Chalkboard
only gets 7.14% votes.

6.3 Evaluation of Algorithms of Searching Similar
Plays Within a Game
We randomly sample 10,000 pairs of sports games/plays
from the dataset, and for each pair, we use the short one
as the query play to search the most similar play from the
other one. We report the average results under each setting.

6.3.1 Evaluation Metrics
To evaluate the effectiveness of an approximate algorithm
for the SimPlay problem, we adopt three metrics in the
recent study [9]. (1) Approximate Ratio (AR): It is defined as
the ratio between the dissimilarity of the play returned by an
approximate algorithm and that of the play returned by an
exact algorithm. (2) Mean Rank (MR): We sort all the plays

of a game in an ascending order of their dissimilarities wrt
a query. MR is defined as the rank of the solution returned
by an approximate algorithm. (3) Relative Rank (RR): RR
is a normalized version of MR by the total number plays
of a game. Note that for all measurements, a smaller value
indicates a better algorithm.

6.3.2 Effectiveness Evaluation
Figure 5 (a)-(c) show the effectiveness results. We observe
that learning-based algorithms (i.e., RLS and RLS-Skip)
consistently outperform all other non-learning based ap-
proximate algorithms in terms of all three metrics. For
example, RLS outperforms PSS, the best non-learning based
algorithm, by 75% (resp. 60%) in terms of Mean Rank (resp.
Relative Rank). As expected, POS-D slightly outperforms
POS because it checks more plays for choosing split points
during the search process. Additionally, we observe that
the effectiveness of SizeS is much worse, probably because
the length of the most similar play may not have similar
length as the query play. RLS-Skip is a bit less effective
than RLS, but still better than those non-learning based
algorithms owing to the benefit of its learned policy for
decision making.

Furthermore, we partition the query plays into four
groups, namely G1, G2, G3, and G4, each with 10,000 plays,
such that the lengths of the plays in a group are as follows:
G1 = [100, 150), G2 = [150, 200), G3 = [200, 250) and G4 =
[250, 300). Then, we randomly select 10,000 games and use
them as a database for each group. We report the average
results for each group in terms of RR in Figure 6 (a).

The results of AR and MR provide similar clues and thus
are omitted due to the page limit. Overall, these approxi-
mate algorithms remain stable except for SizeS. We observe
that SizeS gets worse as the query length increases. This
is because for a longer query play, a larger range may be
required to retain the effectiveness.

6.3.3 Efficiency Evaluation
The results of running time are shown in Figure 5 (d). We
observe that RLS-Skip runs the fastest because it skips some
frames and the cost of maintaining the states and making
decisions for these frames is saved. ExactS has the largest
running time. For example, it is usually around 7-9 times
slower than PSS, POS, POS-D, RLS and RLS-Skip. SizeS runs
faster than ExactS since it explores fewer plays, and PSS is
slightly slower than POS, POS-D, and RLS. This is because
PSS needs to compute the similarities of suffixes to make
the splitting decision while the other three only compute
the similarities of prefixes. We show the results of running
time when varying the length of query plays in Figure 6 (b).
We notice that the average running time of all the algorithms
except SizeS is almost not affected by the query length. This
is because the time complexity of computing a similarity is
constant once the vector of the query is learned (we did not
count the time for learning the representation of the query
play since it is shared by all algorithms). For SizeS, the time
grows as the query length increases because the candidate
plays that are explored are longer and it costs more time
learn their representations for measuring their similarities.
Overall, the efficiency results are consistent with their time
complexities as shown in Table 1.
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6.3.4 Parameter Study
We evaluate the effect of the soft margin ξ for SizeS. Figure 7
shows the results of RR and runing time. The results of AR
and MR provide similar clues and thus are omitted due
to the page limit. As expected, the effectiveness of SizeS
becomes better (i.e., it approaches and exceeds RLS and
RLS-Skip gradually) when ξ becomes larger. However, its
running time increases and approaches that of the ExactS.
This is because a larger setting of ξ indicates a larger search
space, which approaches the search space of the ExactS as ξ
grows.

In Figure 8, we study the effects of the parameter D for
POS-D. We vary the D from 1 to 10. Overall, the D would
not greatly affect the POS-D on both effectiveness and
efficiency. As D increases, the effectiveness improves at the
beginning because it checks more frames to perform a split
operation; however, the effectiveness would drop slightly
with a larger setting of D since some prefixes that would
have been formed and considered if D is 0 or small would
be destroyed. The efficiency drops slightly as D increases
since it checks more plays during the search. We thus adopt
the setting D = 5 as the default one since it provides a good
trade-off between effectiveness and efficiency.

We further study the effects of skipping steps k for RLS-
Skip in Table 3. As expected, the general trend is that the
effectiveness drops but its efficiency improves as k increases
since with a larger k, it tends to skip more frames, which
may exclude more plays from being considered and save
some computation costs. In addition, we report the statistics
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Fig. 8. The effect of delay D for POS-D.

TABLE 3
The effect of skipping steps k for RLS-Skip.

Metrics k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
AR 1.007 1.010 1.012 1.015 1.027 1.034
MR 4.794 6.554 9.299 10.163 23.159 33.959
RR 2.1% 2.9% 3.5% 4.0% 6.9% 10.4%

Time (ms) 21.407 20.236 19.364 18.252 15.181 12.377
Skipped Frs 0% 0.5% 1.0% 1.4% 6.5% 9.7%

of the portion of skipped frames. Note that RLS-Skip with
k = 0 corresponds to RLS. We adopt the setting k = 3 as the
default one since it provides a reasonable trade-off between
effectiveness and efficiency.

6.3.5 Case Study

We illustrate a case study to show the most similar play
returned by RLS and RLS-Skip for two random query plays
in Figure 9, where the blue, red and yellow lines denote the
trajectories of defense players, attacking players and ball in
the play, and the small ”x” is the end point of the movement.
In general, we observe the returned plays by RLS and RLS-
Skip match the query plays very well, which is due to their
data-driven nature to find a similar play.

6.4 Evaluation of Algorithms of Searching Similar
Plays Within a Database

6.4.1 Compared Methods

We compare the ScoreSearch with two baseline methods.
The ScoreSearch algorithm uses the RLS-Skip algorithm for
finding the most similar play of a game to a query play.
(1) Full Scan. It finds the most similar play of each game
in the database to a query play using RLS-Skip and then
returns the one with the greatest similarity to the query play
among the found plays.
(2) Random Sampling. It randomly samples a fraction of
r · N games from the database, finds the most similar play
of each sampled game to a query play using RLS-Skip, and
then returns the one with the greatest similarity to the query
play among the found plays.
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Fig. 9. Case study on similar play retrieval.

6.4.2 Parameter Settings and Evaluation Metrics
For training the triplet network in ScoreSearch, we ran-
domly sample 30k triplets from the dataset and set δ = 1.0
in the triplet loss based on empirical findings. To evaluate
the effectiveness of ScoreSearch, we reuse the evaluation
metrics of AR, MR and RR, which are calculated based on
the results returned by Full Scan.

6.4.3 Effectiveness Evaluation
We study the ScoreSearch algorithm for searching similar
plays in a database. We vary two parameters, i.e., dataset
size and the fraction parameter r. We report the average
effectiveness results in Figure 10 (a)-(b). We observe the
effectiveness improves as the fraction parameter r increases.
This is because with a larger r, more games that contain
similar plays would be considered for searching for the
similar play. In addition, the effectiveness improves slightly
as the dataset size increases. This is because with a larger
N , more games would be considered for searching for the
similar play. As expected, ScoreSearch is much better than
the Random Sampling since it filters games guided by a
learning model instead of a simple random process. The
results provided by AR and MR show similar trends and
thus they are omitted.

6.4.4 Efficiency Evaluation
The running times of Full Scan, Random Sampling and
ScoreSearch are presented in Figure 10 (c)-(d). As expected,
the running time increases with a larger fraction parameter
r since more games are selected from the database for con-
ducting the search. In addition, we observe that ScoreSearch
is faster than the Random Sampling. This could be explained
by the fact that ScoreSearch selects shorter games compared
with Random Sampling and the process of searching for a
similar play from a shorter game takes less time than from
a longer game.

7 RELATED WORK
Sports Data Analytics. The conventional methods for sports
play retrieval are based on “keywords”, which however
requires the data to be annotated with keywords and users
to have necessary prior knowledge on keywords. Most
germane to our work is the work by Sha et al. [7], [25], which
measures the similarity between two plays by first aligning
trajectories from two plays (based on the extracted roles of
trajectories) and then aggregating the similarities between
aligned trajectories as one between the two plays. Probst et
al. [26] focus on queries such as region queries based on
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Fig. 10. Results of RR (a)-(b) and running time (c)-(d) for varying dataset
size and fraction.

spatiotemporal sports data. Di et al. [27] propose to extract
features from sports plays by using CNNs on the visual
representations of trajectories and use the extracted features
together with some other features to learn a rankSVM
model for serving users with specific preferences (conveyed
with click-through data). Other types of sports analytics
include those of detecting team formations [1], [2], identify-
ing spatial patterns of movement [3], [4], analyzing sports
videos [28] and sports prediction [5], [6]. The work [29]
gives a more detailed survey on spatiotemporal sports data
analytics.

Measuring Trajectory Similarity. The problem of measuring
the similarity between trajectories (time series in general)
has been studied extensively. DTW [19] is the first attempt
towards solving the local time shift issue for computing tra-
jectory similarity. Frechet distance [20] is a classical similar-
ity measure that treats each trajectory as a spatial curve and
takes into account the location and order of the sampling
points. ERP [30] and EDR [31] are proposed to further im-
prove the ability to capture spatial semantics in trajectories.
Nevertheless, these methods are mainly based on alignment
of matching sample points, and thus they are inherently
sensitive to noise and varying sampling rates which exist
commonly in trajectory data. To address this issue, Su et
al. [23] propose an anchor-based calibration system that
aligns trajectories to a set of fixed locations. Ranu et al. [22]
formulate a robust distance function called EDwP to match
trajectories under inconsistent and variable sampling rates.
These similarity measures are usually based on the dynamic
programming technique to identify the optimal alignment
which leads to O(n2) computation complexity, where n is
the length of the trajectories. More recently, Li et al. [24]
propose to learn representations of trajectories in the form
of vectors and then measure the similarity between two
trajectories as the Euclidean distance between their corre-
sponding vectors and Yao et al. [32] employ deep metric
learning to accelerate trajectory similarity computation. An-
other related study is one studying trajectory set similarity
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on road networks by He et al. [21], in which the idea of the
Earth Mover’s Distance (EMD) is leveraged to capture both
spatial and temporal characteristics of trajectories.
Querying and Mining Subtrajectories. There have been
existing studies which take fragments of trajectories as units
for analytics, including subtrajectory clustering [33], [34],
[35], subtrajectory similarity search [9], [36] and subtrajec-
tory join [37]. Specifically, Lee et al [35] propose a partition-
and-group framework for clustering, which partitions a
trajectory into many subtrajectories rather than grouping
similar trajectories as a whole, and Buchin et al. [34] prove
the subtrajectory clustering problem is NP-Hard and pro-
pose several approximation algorithms. Agarwal et al. [33]
further apply the trajectory simplification technique to de-
velop approximation algorithms for subtrajectory clustering
based on discrete Frechet distance. Recently, Tampakis et
al. [37], [38] propose a distributed solution for subtrajectory
clustering and join based on the MapReduce programming
model. Additionally, in our prior work [9] and the work [36]
by Koide et al., the problem of searching sub-trajectories
that are similar to a given trajectory is studied, where the
former focuses on trajectories in free space and the latter on
road networks. In [9], we study the similar sub-trajectory
search problem and develop both exact and approximate
algorithms. In this work, we study a counterpart problem
on plays, which comprise multiple trajectories, and adapt
the algorithms for the problem of splitting a trajectory in [9]
to that of splitting a game in this paper.
Representation Learning. Inspired by the success of
word2vec, the idea of representation learning [39] is widely
used for many tasks such as natural language process-
ing [40] and graph embedding [41]. The Skip-Gram with
Negative Sampling (SGNS) model [11] is one of common
methods of word2vec which is based on the assumption
in linguistics that words frequently occurring in a sentence
tend to share more statistical information. Seq2Seq based
learning model has achieved good performance on spa-
tiotemporal data [24], [42]. The ability to capture the local
spatial correlation makes it inherently applicable to various
downstream analysis tasks. Our proposed model is inspired
by the Seq2Seq model and the SGNS architecture. Our
play2vec model is different from those targeted in previous
studies. To accelerate the training of play2vec, we design
a method to generate training data with hard negative
sampling. We also use a grid structure that is robust to noise
and varying sampling rates.

8 CONCLUSIONS
In this paper, we study the similar play retrieval problem.
This problem is to find a fragment of a game in a database,
which is the most similar to a query play. We make the
following technical contributions. First, we design the first
deep learning based method called play2vec for computing
the similarity between two sports plays. play2vec is robust
to the non-uniform sampling rates and noises and runs in
linear time. Second, we develop a suite of algorithms for the
problem of searching for the most similar play to a query
play within a game. Third, we develop a novel algorithm
based on deep metric learning, ScoreSearch, for searching
for the most similar play to a query play within a database.

One interesting future research direction could be to conduct
other analytic tasks such as play clustering based on the
proposed play2vec similarity measurement.
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