
Effective Named Entity Recognition with Boundary-aware
Bidirectional Neural Networks

Fei Li1,2, Zheng Wang3,∗, Siu Cheung Hui3, Lejian Liao1,2,∗, Dandan Song1,2 and Jing Xu1,2
1School of Computer Science and Technology, Beijing Institute of Technology, China

2Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing
Applications, China

3School of Computer Science and Engineering, Nanyang Technological University, Singapore
{lifei926,liaolj,sdd}@bit.edu.cn,{wang_zheng,asschui}@ntu.edu.sg,bitjingxu@gmail.com

ABSTRACT
Named Entity Recognition (NER) is a fundamental problem in Natu-
ral Language Processing and has received much research attention.
Although the current neural-based NER approaches have achieved
the state-of-the-art performance, they still suffer from one or more
of the following three problems in their architectures: (1) bound-
ary tag sparsity, (2) lacking of global decoding information; and
(3) boundary error propagation. In this paper, we propose a novel
Boundary-aware Bidirectional Neural Networks (Ba-BNN) model to
tackle these problems for neural-based NER. The proposed Ba-BNN
model is constructed based on the structure of pointer networks for
tackling the first problem on boundary tag sparsity. Moreover, we
also use a boundary-aware binary classifier to capture the global de-
coding information as input to the decoders. In the Ba-BNN model,
we propose to use two decoders to process the information in two
different directions (i.e., from left-to-right and right-to-left). The
final hidden states of the left-to-right decoder are obtained by in-
corporating the hidden states of the right-to-left decoder in the
decoding process. In addition, a boundary retraining strategy is
also proposed to help reduce boundary error propagation caused
by the pointer networks in boundary detection and entity classifi-
cation. We have conducted extensive experiments based on three
NER benchmark datasets. The performance results have shown
that the proposed Ba-BNN model has outperformed the current
state-of-the-art models.

CCS CONCEPTS
• Computing methodologies → Information extraction.

KEYWORDS
named entity recognition, boundary retraining, bidirectional de-
coding, pointer networks
ACM Reference Format:
Fei Li, Zheng Wang, Siu Cheung Hui, Lejian Liao, Dandan Song and Jing Xu.
2021. Effective Named Entity Recognition with Boundary-aware Bidirec-
tional Neural Networks. In Proceedings of the Web Conference 2021 (WWW

∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449995

Boundary tag
sparsity

Lacking of
global decoding
information

Boundary error
propagation

Softmax
√ √ ×

CRF
√ √ ×

RNN × √ √

PN × √ √

Table 1: The current state-of-the-art neural NER approaches
and their corresponding problems (

√
indicates the problem

exists).

’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, Ljubljana, Slovenia, 9 pages.
https://doi.org/10.1145/3442381.3449995

1 INTRODUCTION
The task of named entity recognition (NER) is to find and classify the
type of a named entity in text, such as person (PER), location (LOC)
or organization (ORG). It is widely viewed as a fundamental problem
in natural language processing (NLP) and serves many downstream
applications such as entity linking [7], relation extraction [26],
question generation [28] and coreference resolution [2].

NER is typically modeled as a sequence labeling task, where
each word in a sentence is assigned a special label. In recent years,
many neural-based NER approaches were proposed as end-to-end
sequence labeling models. In general, these approaches can be
classified into four categories according to their decoding architec-
tures [15]: Multi-Layer Perceptron (MLP) with Softmax [6, 23, 29],
Conditional Random Fields (CRF) [3, 9, 14], Recurrent Neural Net-
works (RNN) [20], and Pointer Networks (PN) [16, 27]. Although
these approaches are currently the state-of-the-art techniques for
NER, they still suffer from one or more of the following common
problems in NER research: (1) boundary tag sparsity; (2) lacking
of global decoding information; and (3) boundary error propaga-
tion. Table 1 summarizes the problems for each category of the
neural-based NER approaches.

The problem on boundary tag sparsity is due to the semantic na-
ture of natural language, in which entities are rare and non-entities
are common in a sentence. MLP with Softmax and CRF are two
typical approaches that suffer from such problem as they are unable
to tackle it with simple classifiers such as Maximum Entropy [10].
The lack of global decoding information is a common problem
in existing encoder-decoder architectures. This is mainly due to
the individual decoding process (e.g., in Softmax) or the nature

https://doi.org/10.1145/3442381.3449995
https://doi.org/10.1145/3442381.3449995

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia F. Li, Z. Wang, S. Hui, L. Liao, D. Song, J. Xu

of unidirectional decoding processing from left-to-right (e.g., in
CRF, RNN and PN). For example, the RNN-based tag decoder can
serve as a language model to condition each output tag based on
the previously generated tag. Unfortunately, information on unex-
ploited context is lacking and not available. Intuitively speaking,
such global information is important as it follows human cognitive
habit in reading and writing.

The problem on boundary error propagation occurswhen pointer
networks-based decoders [16, 27] are deployed for the NER task.
Pointer networks are built on top of encoder-decoder architectures
with the encoder extracting contextual representation for an input
sequence, and the decoder detecting named entities via a pointer
mechanism to find the corresponding boundary positions from
the encoder. Although these pointer networks-based models have
achieved better performance on tackling the problems of bound-
ary tag sparsity and variable size vocabulary (i.e., models need
retraining with respect to different vocabulary sizes) as discussed
in [16], they inevitably accumulate errors in the decoding process.
The pointer networks-based architecture depends heavily on the
accuracy of entity boundary detection. As the input of the current
detection will need the output of the previous detection, it will be
propagated in the NER process if a boundary detection error oc-
curs. As such, the accuracy of entity classification will be adversely
affected. This seems to be the obvious disadvantage of such pointer
networks-based approaches.

In this paper, we propose a novel Boundary-aware Bidirectional
Neural Networks (Ba-BNN) to tackle the three problems encoun-
tered by the current neural-basedNER approaches as follows. Firstly,
the proposed Ba-BNN model is constructed on top of encoder-
decoder architecture and integratedwith the pointermechanism [24]
into a sequence labeling framework to deal with the boundary tag
sparsity problem. Secondly, we propose a boundary-aware bidirec-
tional decoding mechanism to capture the global decoding informa-
tion. In particular, we first use a binary classifier to predict whether
the word in the sentence is a boundary or not with supervised
training. This enables the hidden states of these words carry more
context-aware boundary features during the process of network
optimization. A Self-Attention function is then applied on these
hidden states to obtain global information as input to the decoders.
In addition, we also use two decoders to process the information
in two different directions (i.e., from left-to-right and right-to-left).
The final hidden states of the left-to-right decoder are obtained
by incorporating the hidden states of the right-to-left decoder in
the decoding process. Thirdly, we propose a boundary retaining
strategy to train the boundaries that were wrongly predicted due
to the pointer mechanism. As the input of decoder is now with
boundary-aware global information, the error propagation problem
would be alleviated.

To summarize, the main contributions of this paper are as fol-
lows:

• We classify the current neural-based NER approaches into
four main categories and identify three major problems en-
countered by them. We propose a novel Boundary-aware
Bidirectional Neural Networks (Ba-BNN) which integrates a
suite of techniques including the pointer networks mecha-
nism, boundary-aware bidirectional decoding and boundary

retraining strategy in order to tackle the current NER prob-
lems. These techniques benefit each other from the sharing
of information with multitask training. Thus, our proposed
Ba-BNN model achieves superior performance than the cur-
rent neural-based NER approaches.
• We conduct extensive experiments on three NER benchmark
datasets, namely CoNLL2003, WNUT2017 and JNLPBA. The
experimental results have shown that our Ba-BNNmodel has
achieved the state-of-the-art performance and outperforms
the current neural-based NER models.

The rest of the paper is organized as follows. We review the related
work in Section 2 and present our proposed model in Section 3. The
experimental results are discussed in Section 4. Finally, we conclude
the paper in Section 5.

2 RELATEDWORK
In this section, we review the related work on the current ap-
proaches for named entity recognition. These approaches can be
categorized into Multi-Layer Perceptron (MLP) with Softmax, Con-
ditional Random Fields (CRF), Recurrent Neural Networks (RNN)
and Pointer Networks (PN).

2.1 Multi-Layer Perceptron with Softmax
Applying a Multi-Layer Perceptron (MLP) with Softmax as the label
decoder layer, the sequence labeling task is acting as a multi-class
classification problem. The label for each word is independently
predicted based on the context-dependent representations with-
out taking into consideration of its neighbors. Tomori et al. [23]
used deep neural networks as an encoder to learn the contextual
representations of words, which were concatenated with the state
embeddings and fed into a Softmax layer for predicting the named
entities. Instead of deep neural networks, Transformer was used
by Devlin et al. [6] as an encoder to learn the contextual word
representations, and then Multi-Layer Perceptron with Softmax
was applied as a decoder for labeling the words. Gregoric et al. [29]
employed multiple independent bidirectional LSTM [8] to learn
different features, and then these features are concatenated and fed
into a Softmax layer for named entity prediction.

2.2 Conditional Random Fields
Conditional random fields (CRF) is a random field that is globally
conditioned on the observation sequence [12]. Huang et al. [9] uti-
lized the bidirectional LSTM as an encoder to learn the contextual
representation of words, and then conditional random fields was
used as a decoder to label words as a sequence labeling task. It has
achieved the state-of-the-art results on various datasets. Inspired
by the success of BiLSTM-CRF, the related models with some adap-
tations have been widely used in the field of NER for the past few
years. Specifically, Chiu and Nichols [3] used convolutional neural
network (CNN) to capture spelling features, and the characters and
word characteristics are concatenated as the input of BiLSTM with
CRF network. Additionally, Lample et al. [14] used RNN-BiLSTM-
CRF as an alternative, and Strubell et al. [21] proposed an improved
CNN model called ID-CNNs, which can encode words concurrently
for a large amount of textual data.

Effective Named Entity Recognition with Boundary-aware Bidirectional Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

2.3 Recurrent Neural Networks
With recurrent neural networks (RNN) as the decoder layer for
labeling tasks, this network structure serves as a language model to
greedily produce a sequence with the traditional seq2seq structure.
Shen et al. [20] reported that RNN decoders can achieve close to
the state-of-the-art performance and perform better when training
with a large number of entity types. Specifically, at the first step, a
special [GO]-symbol is provided as the first input 𝑦1 to the RNN
decoder. Subsequently, at each time step, the RNNdecoder computes
the current decoder’s hidden state ℎ𝐷𝑒𝑐

𝑖+1 for decoding word 𝑖 + 1
according to the previous tag𝑦𝑖 , the previous decoder’s hidden state
ℎ𝐷𝑒𝑐
𝑖

and the encoder’s hidden state ℎ𝐸𝑛𝑐
𝑖+1 of the current word. The

current generated ℎ𝐷𝑒𝑐
𝑖+1 is decoded via a Softmax function and is

then fed in as an input to the next step. Finally, the labeled sequence
is obtained over all steps.

2.4 Pointer Networks
Pointer networks [24] was proposed to solve combinatorial opti-
mization problems. It uses the attention mechanism as a pointer to
select one of the words in the input sequence as the output. In [27],
Zhai et al. used the pointer networks for the sequence chunking
task. The decoder first detects the possible positions with a pre-
defined maximum chunk length at each time step, and then these
chunks are labeled with a Softmax function. Subsequently, Li et
al. [16] used the pointer networks for named entity boundary de-
tection. At each time step, the starting boundary word in an entity
is trained to point to the corresponding ending boundary word, and
the non-boundary word is trained to point to a specific position.
This method has achieved promising results.

In this paper, our proposed model has also adopted the pointer
networks-based architecture. However, our proposed model has
incorporated some important features to tackle the shortcomings of
the current approaches. Different from the current approaches, our
proposed model has the following features: (1) We explore the bidi-
rectional decoding method and propose a boundary-aware binary
classifier to tackle the problem on the lacking of global decoding
information as discussed in Section 1. (2) A boundary retraining
strategy is proposed to help reduce boundary error propagation
caused by the pointer networks in boundary detection and entity
classification .

3 BOUNDARY-AWARE BIDIRECTIONAL
NEURAL NETWORKS

In this paper, we propose a novel Boundary-aware Bidirectional
Neural Networks called Ba-BNN, which integrates a suite of tech-
niques for tackling the problems that occurred in the current neural-
based NER approaches. Figure 1 shows the architecture of the pro-
posed Ba-BNN model which adopts the pointer networks as the
decoder layer. The proposedmodel is operated as follows. First, each
word in the sentence is mapped into its embedding and the Input En-
coder encodes the embedding into a context-aware representation.
Next, the Entity Boundary Detection deploys bidirectional decoders
(i.e., Left Decoder and Right Decoder) with boundary-aware binary
classifier to detect entity boundaries in two different directions
via the pointer mechanism. Then, the Entity Chunk Generation
generates candidate entity chunks from the bidirectional decoders.

Input Representation

Input Encoder

Michelle Harper lived in New York

Right
Decoder

Left
Decoder

Entity
Chunk

Generation
Entity Chunk
Classification

Loss Loss Loss

Loss

Entity Boundary Detection

Figure 1: The architecture of our proposed Ba-BNN.

Finally, the Entity Chunk Classification classifies each candidate
entity chunk into the corresponding entity type or non-entity with
the boundary retraining strategy. Note that as Entity Boundary
Detection and Entity Chunk Classification share the same encoder,
we apply multitask training when training the proposed Ba-BNN
model.

3.1 Input Encoder
Given an input sentence 𝑆 =< 𝑤1,𝑤2, · · · ,𝑤𝑛 >, each word𝑤𝑖 (1 ≤
𝑖 ≤ 𝑛) is represented as

𝑥𝑖 = [𝑥𝑤𝑖 ;𝑥𝑐𝑖 ;𝑥
𝑢
𝑖], (1)

by using a concatenation of a pre-trained word embedding 𝑥𝑤
𝑖
,

a character-level word embedding 𝑥𝑐
𝑖
and a word feature embed-

ding 𝑥𝑢
𝑖
. The pre-trained word embedding 𝑥𝑤

𝑖
is obtained from

Glove [18]. The character-level word embedding 𝑥𝑐
𝑖
is obtained

with a bidirectional LSTM to capture the orthographic and mor-
phological information. It considers each character in the word as
a vector, and then inputs them to a bidirectional LSTM to learn hid-
den states. The final hidden states from the forward and backward
outputs are concatenated as the character-level word information.
For word feature embedding 𝑥𝑢

𝑖
, we consider word 𝑤𝑖 with four

types of characteristics: (1) all capital characters; (2) starting with a
capital character; (3) all lower case characters; and (4) all digit char-
acters. These word feature embedding and character embedding are
randomly initialized and learned during training. After that, the dis-
tributed representations of the word embeddings < 𝑥1, 𝑥2, ..., 𝑥𝑛 >

are fed into an Input Encoder with bidirectional LSTM to compute
the hidden sequences in forward

−→
ℎ =<

−→
ℎ1,
−→
ℎ2, ...,

−→
ℎ𝑛 > and back-

ward
←−
ℎ =<

←−
ℎ1,
←−
ℎ2, ...,

←−
ℎ𝑛 >. Finally, we concatenate

−→
ℎ𝑖 and

←−
ℎ𝑖 as an

output at each word, i.e., ℎ𝑖 = [
−→
ℎ𝑖 ;
←−
ℎ𝑖].

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia F. Li, Z. Wang, S. Hui, L. Liao, D. Song, J. Xu

Yo
rk

Yo
rk

Input Representation

right decoder pointerleft decoder pointer

Ne
w

Yo
rk

Mi
ch
elle

Ha
rpe
r

Michelle Harper lived in New York Michelle

Mich
elle

Harp
er

live
d in New Yo

rk

Self-Attention

lived in New

Input Encoder RNN Right Decoder RNN Left Decoder RNN

Right decoding inactiveLeft decoding inactive

Attention

Attention probability distribution

Right DecoderLeft Decoder

Mi
ch
elle

Harper

Mich
elle

Harp
er

live
d in New Yo

rk

Self-Attention

lived in York

Mi
ch
elle

 RNN Concatenation

Share module

Figure 2: The entity boundary detection process using bidirectional pointer networks with boundary-aware binary classifier.

3.2 Entity Boundary Detection
After obtaining the representation of each word, the next step is
to detect entity boundaries. To achieve this, we have adopted the
pointer mechanism to sequentially detect boundaries [16]. Specifi-
cally, we pad the hidden states of the encoder with a sentinel word
representing inactive. If the current input is not an entity boundary,
the pointer points to the sentinel word inactive. In this research, we
use bidirectional pointer networks for entity boundary detection
as shown in Figure 2. There are two decoders based on the pointer
networks. For the Right Decoder, we pad a right decoding inactive
at the last position of the hidden states in the Input Encoder. If the
input is not an entity boundary in left-to-right decoding, we train
the right decoder pointer to point to the right decoding inactive, and
vice versa for the Left Decoder.

More specifically, we first pad the hidden states ℎ of the Input
Encoder with two sentinel vectors at the first and last positions as
follows:

ℎ = [0;ℎ; 0], (2)

where ℎ ∈ R(𝑛+2)×𝐷 , 𝑛 is the length of the original sentence, and
𝐷 is the dimension of the hidden states in the Input Encoder. Then,
two LSTMs are employed as the Right Decoder and Left Decoder
to output the decoder hidden states ℎ𝑟 and ℎ𝑙 , respectively. For
the input of the decoders, we concatenate the word embedding of
the current focus word 𝑤𝑖 with global boundary features, which
are obtained via another bidirectional LSTM in order to capture
context-aware representation 𝐻 , and Self-Attention is applied on 𝐻
to incorporate global features. To do this, we use a binary classifier
on 𝐻 to predict whether the current word is a boundary or not as
follows:

𝑑𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝐻𝑖 + 𝑏), (3)

where𝑊 and 𝑏 are trainable parameters which can be optimized,
and 𝑑𝑖 is a predicted label (i.e., 0 or 1) for the 𝑖-th word. Intuitively,
the binary classifier enables the hidden states to carry more context-
aware boundary features during the process of network optimiza-
tion, thereby enhancing the accuracy of entity boundary detection
by the pointer networks.

Next, we generate a feature representation for each possible
boundary position 𝑖 at time step 𝑗 . Moreover, to provide chunk
level feature, we follow [27] and add the information on the length
of chunk. We use the attention mechanism and the chunk length
to construct the feature representation for left-to-right decoding as
follows:

𝑢
𝑗
𝑖
= 𝑣1

𝑇 𝑡𝑎𝑛ℎ(𝑊1ℎ𝑖 +𝑈1ℎ𝑟 𝑗)

+ 𝑣2𝑇 𝐿𝐸 (𝑖 − 𝑗 + 1), for 𝑖 ∈ [𝑗, 𝑛 + 2]
(4)

Similarly, the feature representation for right-to-left decoding is
constructed as follows:

𝑢
𝑗
𝑖
= 𝑣3

𝑇 𝑡𝑎𝑛ℎ(𝑊2ℎ𝑖 +𝑈2ℎ𝑙 𝑗)

+ 𝑣4𝑇 𝐿𝐸 (𝑗 − 𝑖 + 1), for 𝑖 ∈ [0, 𝑗]
(5)

Then, the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function is used to obtain the probability of
word𝑤𝑖 for determining an entity boundary:

𝑝 (𝑤𝑖 |𝑤 𝑗) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑢 𝑗
𝑖
) (6)

where 𝑣1, 𝑣2, 𝑣3, 𝑣4,𝑊1,𝑊2, 𝑈1 and 𝑈2 are learnable parameters,
𝐿𝐸 (·) is a chunk length embedding, 𝑖 ∈ [𝑗, 𝑛 + 2] and 𝑖 ∈ [0, 𝑗]
indicate a possible position in left-to-right and right-to-left decod-
ing respectively, and 𝑝 (𝑤𝑖 |𝑤 𝑗) denotes the probability of word𝑤𝑖

of entity ending (or starting) boundary given the entity starting
(ending) boundary 𝑤 𝑗 . When 𝑤 𝑗 is not a boundary of any entity,
the pointers are trained to point to the padded sentinel words.

Effective Named Entity Recognition with Boundary-aware Bidirectional Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

The Right Decoder processes the input in a left-to-right decoding
manner.When an input word is denoted as a starting boundary in an
entity, the attention probability distribution will be computed. The
index of the ending boundary is always equal to or greater than the
index of the starting boundary in the Right Decoder. The possible
word position for computing the attention probability distribution
may vary with each decoding step. Once an ending boundary is
identified, a candidate entity chunk is determined. Then, the Right
Decoder starts processing the next word after the ending boundary
from the last decoding step. Other words in the entity do not need
to be processed by the Right Decoder. For example, in Figure 2,
“Harper” is the ending boundary of “Michelle Harper”, and the word
“Harper” will not be processed by the Right Decoder. Similarly,
the Left Decoder processes the input in the right-to-left decoding
manner.

We describe the process of Right Decoder with the example
sentence “Michelle Harper lived in New York” as follows:

• The Right Decoder starts with the input word “Michelle”,
which is the starting boundary of the entity “Michelle Harper”.
Thus, Ba-BNN computes an attention probability distribution
over all positions (i.e., from “Michelle” to “York”) in the input
sentence. The word “Harper” with the maximum probability
from the attention probability distribution is identified and
then assigned to “Michelle”. That is, a right decoder pointer
“Michelle−→ Harper” is constructed.
• Then, “lived” is processed as the input word to the Right
Decoder. It needs to compute the probability distribution
from “lived” to “York”. However, it is identified as an non-
entity word from the distribution. Then, the right decoder
pointer points to right decoding inactive.
• Similarly, the right decoder pointer also points to right decod-
ing inactive for the word “in”.
• Next, “New” is processed as the next input word to the Right
Decoder, and the proposed Ba-BNN computes the attention
probability distribution from “New” to “York”. As a result,
“York” is identified as the ending boundary and assigned to
“New”, and a right decoder pointer “New−→ York” is con-
structed.

3.3 Entity Chunk Generation
After Entity Boundary Detection, we obtain two sets of chunks (in
boundary pairs) from Right Decoder and Left Decoder. Next, we
introduce the following three strategies for entity chunk generation,
which are shown in Figure 3:

Naive: It simply chooses the entity chunks that are formed from
the Right Decoder. Intuitively, the Right Decoder is more natural
in language processing, i.e., processing a sentence from left to
right. The Left Decoder can be considered as auxiliary to the Right
Decoder as they share the same encoder and are trained together
as a multitask. This strategy is shown in Figure 3(a).

Selection-aware Generation (SG): It merges all the candidate
entity chunks for chunk generation. However, based on empirical
findings, the performance is not very good. Therefore, we keep the
entity chunks from the Right Decoder and select the entity chunks
from the Left Decoder that have partial chunk overlap with the
Right Decoder. This strategy is shown in Figure 3(b).

Context-aware Generation (CG): In order to capture the con-
textual information, we concatenate the hidden states from ℎ𝑙 to ℎ𝑟
as a new hidden state to generate the entity chunks from the Right
Decoder. This strategy is shown in Figure 3(c).

As shown in Figure 3, we assume that the set of candidate entity
chunks detected by the Right Decoder is {(1, 2), (3, 3), (5, 6)}, and
the set of candidate entity chunks detected by the Left Decoder
is {(1, 1), (4, 4), (5, 6)}. The candidate entity chunks which are in-
dicated in red color inside the oval shape are the final generated
chunks of the corresponding strategy.

3.4 Entity Chunk Classification
After determining the entity chunks, the next step is to classify them
into their corresponding entity types. Figure 4 shows the Entity
Chunk Classification process. We use a Bi-LSTM network to obtain
the representations of entity chunks. Given an entity chunk 𝑐ℎ(𝑖, 𝑗),
where 𝑖 is the starting boundary and 𝑗 is the ending boundary. We
first get the context-aware word representation sequence of each
word in the entity chunk 𝑐ℎ(𝑖, 𝑗) as 𝑇 = ℎ[𝑖 : 𝑗] ∈ R(𝑗−𝑖+1)×𝐷 ,
where ℎ refers to the hidden states of the Input Encoder discussed
in Section 3.1. Then, the Chunk Encoder learns to map 𝑇 to a fixed-
sized vector. To do this, we pass𝑇 to a Bi-LSTM network to compute
the hidden sequence, and concatenate the first hidden state and last
hidden state as the representation of the entity chunk. Additionally,
we also append the information on the length of chunk. After that,
a multi-layer perception (MLP) is used to obtain the dense vector
representations for the entity chunks. Finally, the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function
is adopted to predict the types for the candidate entity chunks.

In order to further improve the prediction performance, we intro-
duce the Boundary Retraining strategy. In general, the entity chunk
classifier can be trained with the ground truth labels following the
ideas of teacher forcing [13]. However, it is ineffective because the
entity chunks generated by Entity Chunk Generation are not all
correctly identified, which may cause error propagation. To resolve
the issue, we assign a new class “O” to assign the incorrect entity
chunks to non-entity chunks. Specifically, we collect the negative
boundary cases produced during the process of entity boundary
detection, and extend the original training data with the collected
cases to train our model.

However, as appending all negative cases to the training data
may cause the imbalance problem, i.e., the negative cases with label
“O” are much larger than the positive cases with entity labels, it will
degrade the recall performance accordingly. As such, we consider
to extend the training data only when the model tends to converge.
Specifically, we use ground truth labels to train the classifier at the
early stage of model training. When the model tends to converge,
i.e., the change in F1(%) on the development dataset is lower than a
given threshold \ , we append negative cases to the training data to
fine-tune the classifier.

3.5 Multitask Training
There are two main processes in our Ba-BNN model: Entity Bound-
ary Detection and Entity Chunk Classification. The loss 𝐿𝑏𝑟 and 𝐿𝑏𝑙
are for detecting entity boundaries from the Right Decoder and Left
Decoder, respectively. The loss 𝐿𝑏𝑎 is for boundary-aware binary

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia F. Li, Z. Wang, S. Hui, L. Liao, D. Song, J. Xu

Encoder Right Decoder

Left Decoder (1,1),(4,4),(5,6)

(1,2),(3,3),(5,6)

(b) Selection-aware Generation

(1,2),(3,3),(5,6)
(1,1),(5,6)

Candidate Chunks

Encoder Right Decoder

Left Decoder (1,1),(4,4),(5,6)

(1,2),(3,3),(5,6)

1 2 3 4 5 6

Candidate Chunks

(a) Naive

Encoder Right Decoder

Left Decoder

Candidate Chunks (1,2),(3,3),(5,6)

(c) Context-aware Generation

Mi
ch
elle

Ha
rpe
r
live
d in Ne

w
Yo
rk

1 2 3 4 5 6
Mi
ch
elle

Ha
rpe
r
live
d in Ne

w
Yo
rk

1 2 3 4 5 6
Mi
ch
elle

Ha
rpe
r
live
d in Ne

w
Yo
rk

Mi
ch
elle

Ha
rpe
r

live
din

Ne
w

Yo
rk

Mi
ch
elle

live
d in

Ne
w

Figure 3: The Entity Chunk Generation process.

Input Representation

Softmax

PER LOC
Chunk Encoder RNN

MLP

Softmax

MLP

Concatenation

Michelle Harper lived in New York

Figure 4: The Entity Chunk Classification process.

classifier to enhance entity boundary detection with global bound-
ary information. The loss 𝐿𝑐 𝑓 is for predicting the entity chunk
type. In particular, 𝐿𝑏𝑟 and 𝐿𝑏𝑙 are used to optimize entity bound-
ary detection, 𝐿𝑏𝑎 is used to enhance entity boundary detection,
and 𝐿𝑐 𝑓 is used to optimize entity chunk type prediction based on
the boundaries. As boundary detection and chunk type prediction
share the same encoder, we apply a multitask loss for training the
Ba-BNN model as follows:

𝐿𝑚𝑢𝑙𝑡𝑖 = 𝛼 (𝐿𝑏𝑟 + 𝐿𝑏𝑙 + 𝐿𝑏𝑎) + (1 − 𝛼)𝐿𝑐 𝑓 , (7)

where 𝛼 is a hyperparameter that is used to balance the importance
of each process.

4 EXPERIMENTS
In this section, we first discuss the datasets, baseline models and
parameter settings used in the experiments. Then, we present the
experimental results on the three benchmark datasets. Moreover,
an ablation study is also conducted.

Dataset train dev test

CoNLL2003 #sentences 14,987 3,466 3,684
#entities 23,499 5,942 5,648

WNUT2017 #sentences 3,394 1,009 1,287
#entities 3,160 1,250 1,589

JNLPBA #sentences 16,691 1,853 3,855
#entities 46,388 4,902 8,657

Table 2: Statistics of CoNLL2003, WNUT2017, and JNLPBA
datasets.

4.1 Datasets
We evaluate the proposed model on three benchmark datasets in-
cluding CoNLL2003 [22], WNUT2017 [5] and JNLPBA [4].

• CoNLL2003 - It is collected from Reuters news articles. Four
different types of named entities including PER, LOC, ORG
and MISC are defined by the CoNLL 2003 NER shared task.
• WNUT2017 - It is a set of noisy user-generated text includ-
ing YouTube comments, StackExchange posts, Twitter text,
and Reddit comments. Six types of entities including PER,
LOC, Group, Creative_work, Corporation and Product are an-
notated.
• JNLPBA - It is collected from MEDLINE abstracts. Five types
of entities includingDNA, RNA, protein, cell_line and cell_type
are annotated.

Table 2 presents the statistics of these datasets.

4.2 Baseline Models
We evaluate the proposed Ba-BNN model against the following
baseline models:

• BiLSTM-Softmax - This model utilizes BiLSTM to learn the
contextual representation of words, and then a Multi-Layer
Perceptron with Softmax is used as the label decoder layer
to infer decoder tags.
• BiLSTM-CRF [14] - This model uses CRF instead of Multi-
Layer Perceptron with Softmax in BiLSTM-Softmax.

Effective Named Entity Recognition with Boundary-aware Bidirectional Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0.1 0.2 0.3 0.4 0.5
94.5

94.6

94.7

94.8

94.9

95

95.1

95.2

95.3

Alpha

F1
 S

co
re

s
(%

)

Figure 5: Experimental results on the development set of
CoNLL2003 using different values of 𝛼 .

• BiLSTM-PN1 - This model uses BiLSTM as the encoder and
another unidirectional LSTM with pointer networks as the
decoder for entity boundary detection [16]. Then, the en-
tity chunks generated by the decoder are classified with a
Softmax classifier.
• HCRA [17] - This model uses sentence-level and document-
level representations to augment the contextualized repre-
sentation.
• ELMo [19] - This model uses a deep bidirectional language
model to learn contextualized word representation on a large
text corpus.
• BERT [6] - This model learns contextualized word represen-
tation based on a bidirectional transformer.
• CS Embeddings [1] - This model uses BiLSTM-CRF with
character-level contextualized representations.
• MRC [17] - This model formulates the NER task as a machine
reading comprehension task.

4.3 Parameter Settings
Our proposed Ba-BNN model is implemented in the PyTorch frame-
work. We use 300-dimensional pre-trained Glove word embed-
dings 2 [18]. The char embeddings and word feature embeddings
are initialized randomly as 50-dimensional and 25-dimensional
vectors, respectively. When training the model, both of the em-
beddings are updated along with other parameters. We use Adam
optimizer [11] for training with a mini-batch. We set the learning
rate to 0.001, dropout rate to 0.5, the hidden layer size to 400, and
the gradient clipping to 5. The 𝛼 of multitask loss is tuned during
the development process. The value of 𝛼 is set to 0.3. We report
the results based on the best performance on the development set.
All of our experiments are conducted on the same machine with
8-cores of Intel(R) Xeon(R) E5-1630 CPU@3.70GHz and two Nvidia
GeForce-GTX GPU.

4.4 Parameter Study
We investigate the impact of the hyperparameter 𝛼 (see Eq. 7) on
the development set of CoNLL2003. To this end, we gradually vary
1In [16], the pointer networks is used for detecting entity boundaries only. We repro-
duce this work and add one Softmax layer for the NER task.
2http://nlp.stanford.edu/projects/glove/

𝛼 from 0.1 to 0.5 with an increment of 0.1 in each step. As shown
in Fig. 5, we find that our model has achieved the best performance
when 𝛼=0.3 by empirical results. Therefore, we set 𝛼=0.3 for all
experiments thereafter.

4.5 Experimental Results
Table 3 shows the experimental results of Ba-BNN and the baseline
models. From Table 3, when comparing with models without using
any language models or external knowledge, we observe that our
model outperforms all the compared models in terms of precision,
recall and F1 scores, and achieves 0.59%, 3.15% and 2.43% improve-
ments on F1 scores for the CoNLL2003, WNUT2017 and JNLPBA
datasets, respectively. Among the compared models, the precision
and recall of the BiLSTM-Softmax model are generally lower than
other models. This is because the Softmax classifier is unable to
tackle the problem of boundary tag sparsity through the simple
Maximum Entropy [10]. Moreover, as it only uses a single decoding
process, it is unable to make use of the global decoding information.
In addition, we also observe that BiLSTM-CRF performs slightly
better than BiLSTM-PN since the use of pointer networks suffers
from the boundary error propagation problem during boundary
detection and entity type classification. HCRA is the current state-
of-the-art model for the NER task by fusing sentence-level and
document-level representations for global contextualized represen-
tation. Although the contextualized representation helps reduce
the problem on lacking of global information to some extent, it still
suffers from the problem on boundary tag sparsity since the model
is built basd on the BiLSTM-CRF architecture. Our Ba-BNN model
achieves the best performance as it is capable of tackling the com-
mon NER problems as discussed in Section 1. Also, we observe that
“Ba-BNN-CG” achieves the best performance when compared with
“Ba-BNN-Naive” (with 0.46% improvements in F1) and “Ba-BNN-SG”
(with 0.02% improvements in F1). It is because the bidirectional de-
coder in “Ba-BNN-CG” has fully utilized the contextual information
to generate more accurate entity boundaries.

When pre-trained language models such as ELMo and BERT are
incorporated, all the models have achieved better performance re-
sults. In particular, we observe that our Ba-BNNmodel has achieved
1.17%, 3.43% and 2.9% improvements on the F1 scores for the CoNLL-
2003, WNUT2017 and JNLPBA datasets, respectively when com-
pared with the other models. Similarly, “Ba-BNN-CG+BERT” also
performs better than the other two strategies (i.e., Naive and SG)
with the pre-trained language model. Overall, our proposed model
has achieved the best performance results when compared with
other models. It is consistent with the performance results discussed
earlier on comparison with models without using any pre-trained
language models in this section.

4.6 Ablation Study
To show the importance of each component of our proposed model,
we conduct an ablation experiment including bidirectional decoder,
boundary-aware binary classifier and boundary retraining strategy.
We choose the model Ba-BNN-CG+BERT as an example to show
the ablation study and the results are reported in Table 4. As shown
in Table 4, all these components contribute significantly to the
effectiveness of our model.

http://nlp.stanford.edu/projects/glove/

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia F. Li, Z. Wang, S. Hui, L. Liao, D. Song, J. Xu

Model CoNLL2003 WNUT2017 JNLPBA
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM-Softmax 88.53 90.21 89.36 48.99 26.07 34.03 72.20 67.74 69.90
BiLSTM-CRF 90.88 90.62 90.75 50.86 35.50 41.81 73.08 71.56 72.31
BiLSTM-PN 90.34 90.31 90.32 54.23 30.43 38.98 67.72 74.90 71.13
HCRA - - 91.96 - - - - - -
Ba-BNN-Naive (ours) 92.60 91.59 92.09 57.44 34.43 43.05 71.02 75.28 73.09
Ba-BNN-SG (ours) 92.84 92.23 92.53 56.02 36.89 44.49 70.56 77.79 74.00
Ba-BNN-CG (ours) 93.11 91.99 92.55 57.99 36.71 44.96 72.77 76.82 74.74
+ Language Models / External knowledge
ELMo - - 92.22 - - 45.33 71.18 77.68 74.29
BERT - - 92.80 - - 46.1 70.73 80.36 75.24
CS Embeddings 92.37 93.12 92.74 - - - 71.18 77.68 74.29
MRC 92.33 94.61 93.04 - - - - - -
BiLSTM-PN+BERT 92.02 92.45 92.23 56.82 36.87 44.72 68.56 77.32 72.68
HCRA+BERT - - 93.37 - - - - - -
Ba-BNN-Naive+BERT (ours) 93.88 94.01 93.94 59.98 39.51 47.64 75.05 79.47 77.20
Ba-BNN-SG+BERT (ours) 94.09 94.72 94.40 59.17 42.46 49.44 74.55 81.97 78.08
Ba-BNN-CG+BERT (ours) 94.37 94.72 94.54 60.24 42.06 49.53 75.27 81.23 78.14

Table 3: Experimental results on three benchmark datasets.

CoNLL2003 WNUT2017 JNLPBA
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Ba-BNN-CG+BERT 94.37 94.72 94.54 60.24 42.06 49.53 75.27 81.23 78.14
w/o BERT 93.11 91.99 92.55 57.99 36.71 44.96 72.77 76.82 74.74
w/o Bi-decoder 93.87 94.33 94.10 59.19 41.16 48.56 73.29 80.33 76.65
w/o Binary classifier 92.12 92.75 92.43 57.31 38.32 45.93 69.72 78.47 73.84
w/o Boundary retraining 94.42 93.89 94.15 60.32 40.37 48.37 75.49 80.14 77.75

Table 4: Experimental results of the ablation study of the Ba-BNN model.

We analyze the results based on CoNLL2003, which will have the
similar trend as for other datasets. Overall, the pre-trained word em-
bedding (i.e., BERT), bidirectional decoder, boundary-aware binary
classifier and boundary retraining strategy can help improve the
effectiveness of the proposed model by approximately 2.0%, 0.4%,
2.1% and 0.4% respectively in terms of F1 score. The discussion on
the effectiveness of each component is given as follows:

• The pre-trained BERT embeddings can provide better word
representations and improve boundary detection than ran-
dom initialization in model training. As such, boundaries
can be detected more accurately for extracting entities.
• The bidirectional decoder improves the precision and recall
by 0.5% and 0.4% respectively. It has shown the capability of
the bidirectional decoder in capturing global information.
• The boundary-aware binary classifier has improved the pre-
cision by 2.3% and recall by 2.0%. This is because the binary
classifier can help model training in two aspects. Firstly, it
can capture the global information as the input to decoders.
Secondly, the boundary-aware global information can fur-
ther alleviate the error propagation problem in decoding.
• The boundary retraining strategy has helped the recall to
improve by around 0.8% and the precision stays quite stable.

This shows that our boundary retraining strategy can help
alleviate the problem of boundary error propagation.

Overall, the different components of the proposed model can
work effectively with each other with multitask training and enable
the model achieve the state-of-the-art performance for the NER
task.

4.7 Performance Comparison with Pointer
Networks

As our Ba-BNN model is constructed on top of the pointer net-
works [24] (PN) architecture, we compare the performance of our
proposed model with pointer networks which is shown in Figure 6.
The experiment is conducted based on the CoNLL2003 test dataset.
We group the data according to the number of entities from 1 to
>5 in a sentence in the dataset and report the F1 score for each
group. We observe that the proposed Ba-BNN model consistently
outperforms the pointer networks-based model in each group. The
difference gets bigger when the number of entities in a sentence
becomes larger. This is due to the error propagation problem in PN
that could accumulate when more entities exist in a sentence. In
contrast, our boundary-aware bidirectional decoding mechanism
can help tackle this problem effectively.

Effective Named Entity Recognition with Boundary-aware Bidirectional Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

1 2 3 4 5 >5
89

90

91

92

93

94

95

96

Number of entities in a sentence

F1
 S

co
re

s
(%

)

92.17

95.99

92.09

93.49

92.85

95.1

91.73

94.87

90.9

91.76

89.67

91.38

Ba-BNN
PN

Figure 6: Performance comparison between Ba-BNN and
pointer networks mechanism.

5 CONCLUSION
In this paper, we have investigated the problem of the NER task and
proposed a novel Boundary-aware Bidirectional Neural Networks
(Ba-BNN) which integrates a suite of techniques to help alleviate the
threemajor problems that occurred in the current neural-based NER
approaches. We have conducted extensive experiments on three
NER benchmark datasets. The experimental results have shown
that among the state-of-the-art methods, our proposed Ba-BNN
model has achieved the best performance. In the future, we will
explore more architectures for the NER task, e.g., reinforcement
learning [25], to further improve the performance.

ACKNOWLEDGMENTS
This research has been supported by the National Key R&D Pro-
gram of China under Grant No. 2020AAA0106600, the National
Natural Science Foundation of China under Grants No. 61967003
and 61866038, and the Ministry of Education (MoE) of Singapore
under the Academic Research Fund (AcRF) Tier 1 Grant RG135/18.

REFERENCES
[1] Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual String Embed-

dings for Sequence Labeling. In Proceedings of the 27th International Conference
on Computational Linguistics. Association for Computational Linguistics, Santa
Fe, New Mexico, USA, 1638–1649. https://www.aclweb.org/anthology/C18-1139

[2] Shany Barhom, Vered Shwartz, Alon Eirew, Michael Bugert, Nils Reimers, and
Ido Dagan. 2019. Revisiting Joint Modeling of Cross-document Entity and Event
Coreference Resolution. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers. 4179–4189.

[3] Jason P.C. Chiu and Eric Nichols. 2016. Named Entity Recognition with Bidirec-
tional LSTM-CNNs. Transactions of the Association for Computational Linguistics
4 (2016), 357–370. https://doi.org/10.1162/tacl_a_00104

[4] Nigel Collier and Jin-Dong Kim. 2004. Introduction to the bio-entity recognition
task at JNLPBA. In Proceedings of the International Joint Workshop on Natural
Language Processing in Biomedicine and its Applications (NLPBA/BioNLP). 73–78.

[5] Leon Derczynski, Eric Nichols, Marieke van Erp, and Nut Limsopatham. 2017.
Results of the WNUT2017 shared task on novel and emerging entity recognition.
In Proceedings of the 3rd Workshop on Noisy User-generated Text. 140–147.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT (1).

[7] Nitish Gupta, Sameer Singh, and Dan Roth. 2017. Entity linking via joint encoding
of types, descriptions, and context. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing. 2681–2690.
[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[9] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models
for Sequence Tagging. CoRR abs/1508.01991 (2015). arXiv:1508.01991 http:
//arxiv.org/abs/1508.01991

[10] Shafiq Joty, Giuseppe Carenini, and Raymond T Ng. 2015. Codra: A novel dis-
criminative framework for rhetorical analysis. Computational Linguistics 41, 3
(2015), 385–435.

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[12] John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
(2001).

[13] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang,
Aaron C Courville, and Yoshua Bengio. 2016. Professor forcing: A new algorithm
for training recurrent networks. In Advances In Neural Information Processing
Systems. 4601–4609.

[14] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural architectures for named entity recognition. arXiv
preprint arXiv:1603.01360 (2016).

[15] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2020. A survey on deep
learning for named entity recognition. IEEE Transactions on Knowledge and Data
Engineering (2020).

[16] Jing Li, Aixin Sun, and YukunMa. 2020. Neural Named Entity Boundary Detection.
IEEE Transactions on Knowledge and Data Engineering (2020).

[17] Ying Luo, Fengshun Xiao, and Hai Zhao. 2020. Hierarchical Contextualized
Representation for Named Entity Recognition.. In AAAI. 8441–8448.

[18] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[19] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Repre-
sentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 2227–2237. https://doi.org/10.18653/v1/N18-1202

[20] Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and Animashree
Anandkumar. 2018. Deep Active Learning for Named Entity Recognition. In
International Conference on Learning Representations.

[21] Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. 2017.
Fast and Accurate Entity Recognition with Iterated Dilated Convolutions. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Copenhagen, Denmark,
2670–2680. https://doi.org/10.18653/v1/D17-1283

[22] Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 shared task: language-independent named entity recognition. In Proceedings
of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume
4. 142–147.

[23] Suzushi Tomori, Takashi Ninomiya, and Shinsuke Mori. 2016. Domain Specific
Named Entity Recognition Referring to the Real World by Deep Neural Networks.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Association for Computational Linguistics,
Berlin, Germany, 236–242. https://doi.org/10.18653/v1/P16-2039

[24] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in neural information processing systems. 2692–2700.

[25] ZhengWang, Cheng Long, Gao Cong, and Yiding Liu. 2020. Efficient and Effective
Similar Subtrajectory Search with Deep Reinforcement Learning. PVLDB 13, 11
(2020), 12–25.

[26] Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Tie-Yan Liu. 2018. Towards
better text understanding and retrieval through kernel entity salience modeling.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. ACM, 575–584.

[27] Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen Zhou. 2017. Neural models
for sequence chunking. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence. 3365–3371.

[28] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou.
2017. Neural question generation from text: A preliminary study. In National
CCF Conference on Natural Language Processing and Chinese Computing. Springer,
662–671.

[29] Andrej Žukov-Gregorič, Yoram Bachrach, and Sam Coope. 2018. Named Entity
Recognition With Parallel Recurrent Neural Networks. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics, Melbourne, Australia, 69–74.
https://doi.org/10.18653/v1/P18-2012

https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D17-1283
https://doi.org/10.18653/v1/P16-2039
https://doi.org/10.18653/v1/P18-2012

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-Layer Perceptron with Softmax
	2.2 Conditional Random Fields
	2.3 Recurrent Neural Networks
	2.4 Pointer Networks

	3 Boundary-aware Bidirectional Neural Networks
	3.1 Input Encoder
	3.2 Entity Boundary Detection
	3.3 Entity Chunk Generation
	3.4 Entity Chunk Classification
	3.5 Multitask Training

	4 Experiments
	4.1 Datasets
	4.2 Baseline Models
	4.3 Parameter Settings
	4.4 Parameter Study
	4.5 Experimental Results
	4.6 Ablation Study
	4.7 Performance Comparison with Pointer Networks

	5 Conclusion
	References

