
Effective and Efficient Sports Play Retrieval with Deep
Representation Learning

Zheng Wang
Nanyang Technological University

Singapore
wang_zheng@ntu.edu.sg

Cheng Long
Nanyang Technological University

Singapore
c.long@ntu.edu.sg

Gao Cong
Nanyang Technological University

Singapore
gaocong@ntu.edu.sg

Ce Ju
Intelligent Driving Group, Baidu Inc.

Beijing, China
juce@baidu.com

ABSTRACT
With the proliferation of commercial tracking systems, sports data
is being generated at an unprecedented speed and the interest in
sports play retrieval has grown dramatically as well. However, it is
challenging to design an effective, efficient and robust similarity
measure for sports play retrieval. To this end, we propose a deep
learning approach to learn the representations of sports plays, called
play2vec, which is robust against noise and takes only linear time
to compute the similarity between two sports plays. We conduct
experiments on real-world soccer match data, and the results show
that our solution performsmore effectively and efficiently compared
with the state-of-the-art methods.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Knowledge representation and reasoning.

KEYWORDS
Sports play retrieval; deep representation learning; paly2vec

ACM Reference Format:
ZhengWang, Cheng Long, Gao Cong, and Ce Ju. 2019. Effective and Efficient
Sports Play Retrieval with Deep Representation Learning. In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3292500.3330927

1 INTRODUCTION
Nowadays, it becomes a common practice to track the moving
agents in a sports game (e.g., the players and the ball in a soccer
game) using cameras and/or GPS devices. For example, the SportVU
system by STATS LLC, which is an optical tracking system based
on cameras, has been used by professional sports leagues such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330927

as France’s Ligue de Football Professionnel (LFP) and American
National Basketball Association (NBA). The data collected by these
tracking systems can be represented as the trajectories of the players
and the ball in a game, i.e., it embeds both spatial and temporal
features of a game. Hence, it is usually termed as spatiotemporal
sports data and has been used in many sports analytics tasks such
as team formation detection [4, 16], movement pattern mining [8,
18], tactics discovery [8], score prediction [2, 30], and similar play
retrieval [24].

Similar play retrieval is a process of finding those plays from a
database that are similar to a query play, where a play corresponds
to a fragment of a game and has its duration varying from seconds
to minutes. It is widely used in some emerging sports applications
such as ESPN and Team Stream to recommend similar plays to
sports fans. Besides, it could help sports club managers and coaches
to improve team tactics when preparing for an upcoming match [8].

The core problem of similar play retrieval is measuring the simi-
larity between two plays, which is non-trivial because each play
involves multiple trajectories. Existing solutions for this problem
all adopt a two-step approach: (1) it aligns the trajectories in one
play to those in the other; and (2) it computes the similarity be-
tween each pair of trajectories that have been aligned to each other
using some trajectory similarity metrics such as the Dynamic Time
Warping (DTW) [29] and then sums up all similarities to be one
between the two plays [24]. Two strategies have been considered
for the alignment step [24]. The first one is an enumeration-based
strategy which (conceptually) considers all possible alignments and
picks the one with the best similarity score. In practice, the method
with this alignment strategy could be implemented by finding the
optimal matching between the two sets of trajectories using algo-
rithms such as the Hungarian algorithm, where the weight between
a pair of trajectories is set to be the similarity between them. The
second one is a role-based strategy which first detects the role of
each player, which is hidden, and then aligns the trajectories of
two players who share their roles. Here, the role of a player de-
tected may have semantics such as center forward, midfield, etc. in
a soccer game and could change from time to time throughout the
game.

While these existing solutions have some merits in transform-
ing the original problem for plays to one for trajectories with the
alignment strategy, they are insufficient in three aspects.

https://doi.org/10.1145/3292500.3330927
https://doi.org/10.1145/3292500.3330927

The first one is the effectiveness. These methods rely on the
assumption that human beings would check individual pairs of
trajectories separately and then combine their perceptions of simi-
larity on trajectories together using a sum function, which, however,
remains not justified. For example, these methods assume that each
pair of trajectories contributes equally to the final similarity be-
tween two plays, but it is more intuitive to assign more weights to
those pairs of trajectories that are closer to the ball.

The second one is the efficiency. These methods all involve the
procedure of computing the similarity between two trajectories,
which has a time cost at leastO(n2) for those well-known trajectory
metrics (including the DTW one) where n is the length of the longer
trajectory. Since a typical similar play retrieval scenario would
usually need to compute the similarity between the query play
and many plays in the database, which is huge in practice (e.g., a
typical soccer game involves about 4.14 million sampled positions
and one season of soccer games in the English Premier League
involves about 1.57 billion sampled positions), this quadratic time
complexity would impose a big challenge on the efficiency.

The third one is the robustness (against sampling errors and
measurement errors). Recall that the spatiotemporal sports data
is collected by sampling the locations of the players and the ball
with devices such as GPS. Two types of errors are inevitable in the
data, namely the errors due to the sampling nature and those due
to the measurement of devices. Existing methods use the locations
in the form of coordinates and thus some minor changes on the
coordinates may result in an obvious change on the similarity, i.e.,
they are not robust against the errors.

In this paper, we propose to learn representations of plays in a
low-dimensional space using deep models, which we call play2vec,
such that the (Euclidean) distances in the space capture the simi-
larities among the plays well. The core idea of our approach is to
treat a play as a sequence of play segments with uniform durations
and then design a denoising sequential encoder-decoder (DSED)
model for extracting a feature vector from the sequence. There is
a gap that needs to close up to make this idea work since a play
segment, which corresponds to a fragment of a play, has the same
form as a play - it consists of a set of multiple trajectories (of shorter
lengths) while an encoder-decoder model typically accepts inputs
in the form of vectors. We achieve this by embedding each play
segment as a vector. Specifically, we treat each play segment as a
word or token and each play as a sentence in a natural language
context and extend the Skip-Gram with Negative Sampling (SGNS)
model [17] to embed the words (or play segments) as vectors. Again,
there is a gap here since a play segment is in a continuous space
(there exists an infinite number of possible trajectories) while a
word is in a discrete one. We close this gap by (1) mapping each
play segment to a binary matrix, where an entry of the matrix is
set to be 1 if its corresponding cell in a grid that partitions the pitch
is traveled through by some trajectories in the play segment and
0 otherwise; and (2) assigning one token to those matrices that
are similar (for restricting the token space size). In summary, our
approach first maps all play segments to tokens with a spatial grid,
then embeds the tokens as vectors by extending the SGNS model,
and then extracts a feature vector from each play with the DSED
model that is designed to fit our context.

Our new method has obvious advantages over existing ones
in the aforementioned three aspects. Regarding the effectiveness,
our method is based on the popular encoder-decoder deep model
which is widely known to perform well in extracting features from
sequential data. Regarding the efficiency of computing the similar-
ity of two plays, our method runs in O(n + d) time while existing
ones have time complexities at least O(n2), where n is the length
of the longest trajectory in a play and d is the size of a learned fea-
ture vector which is small. Regarding the robustness, our method
involves two mechanisms to deal with sampling errors and mea-
surement errors. First, in the step of mapping play segments to
tokens, a grid is used such that it is not sensitive to errors. Second,
in the encoder-decoder model, the data is first injected with some
noises and then denoised for training which would help mitigate
the problems caused by errors.

In summary, the main contribution includes: (1) we develop an
unsupervised deep learning model, play2vec, to learn representa-
tions of plays, which is superior over existing ones in aspects of
effectiveness, efficiency, and robustness; and (2) we perform exten-
sive experiments on real-world soccer data, which show that our
method consistently outperforms the state-of-the-art in terms of
effectiveness and runs faster than existing methods by over one or-
der of magnitude. We further conduct a user study which validates
our approach with expert knowledge.
Organization.We review the relatedwork in Section 2 and give the
problem definition in Section 3. We present our play2vec method in
Section 4, report our experimental results in Section 5 and conclude
the paper in Section 6.

2 RELATEDWORK
2.1 Sports Data Analytics
The conventional methods for sports play retrieval are based on
“keywords”, which however requires the data to be annotated with
keywords and users to have necessary prior knowledge on key-
words. Most germane to our work is the work by Sha et al. [24, 25],
which measures the similarity between two plays by first aligning
trajectories from two plays (based on the extracted roles of tra-
jectories) and then aggregating the similarities between aligned
trajectories as one between the two plays. Probst et al. [20] focus
on queries such as region queries based on spatiotemporal sports
data. Di et al. [9] propose to extract features from sports plays
by using CNNs on the visual representations of trajectories and
use the extracted features together with some other features to
learn a rankSVM model for serving users with specific preferences
(conveyed with click-through data). Other types of sports analyt-
ics include those of detecting team formations [4, 16], identifying
spatial patterns of movement [8, 18], analyzing sports videos [15]
and sports prediction [2, 30]. The work [10] gives a more detailed
survey on spatiotemporal sports data analytics.

2.2 Measuring Trajectory Similarity
The problem of measuring the similarity between trajectories (time
series in general) has been studied extensively. DTW [29] is the first
attempt towards solving the local time shift issue for computing
trajectory similarity. Frechet distance [1] is a classical similarity
measure that treats each trajectory as a spatial curve and takes

Table 1: Notations and meanings.

Notation Meaning
D database of plays
P play
M segment matrix
V sports corpus
T (T̃) segment token (corrupted version)
vT distributed representation of T
v embedding vector

into account the location and order of the sampling points. ERP [5]
and EDR [6] are proposed to further improve the ability to capture
spatial semantics in trajectories. Nevertheless, these methods are
mainly based on alignment of matching sample points, and thus
they are inherently sensitive to noise and varying sampling rates
which exist commonly in trajectory data. To address this issue, Su
et al. [26] propose an anchor-based calibration system that aligns
trajectories to a set of fixed locations. Ranu et al. [21] formulate a
robust distance function called EDwP to match trajectories under
inconsistent and variable sampling rates. These similarity mea-
sures are usually based on the dynamic programming technique to
identify the optimal alignment which leads to O(n2) computation
complexity, where n is the length of the trajectories. More recently,
Li et al. [14] propose to learn representations of trajectories in the
form of vectors and then measure the similarity between two tra-
jectories as the Euclidean distance between their corresponding
vectors and Yao et al. [28] employ deep metric learning to accelerate
trajectory similarity computation. The main difference between
our study and these studies is that our problem is on plays (which
correspond to sets of multiple trajectories) while these existing
ones are on single trajectory. Another related study is one study-
ing trajectory set similarity on road networks by He et al. [11], in
which the idea of the Earth Mover’s Distance (EMD) is leveraged
to capture both spatial and temporal characteristics of trajectories.

2.3 Representation Learning
Inspired by the success of word2vec, the idea of representation
learning [3] is widely used for many tasks such as natural language
processing [13] and graph embedding [19]. The Skip-Gram with
Negative Sampling (SGNS) model [17] is one of common methods
of word2vec which is based on the assumption in linguistics that
words frequently occurring in a sentence tend to share more statis-
tical information. Seq2Seq based learning model has achieved good
performance on spatiotemporal data [14, 27]. The ability to capture
the local spatial correlation makes it inherently applicable to var-
ious downstream analysis tasks. Our proposed model is inspired
by the Seq2Seq model and the SGNS architecture. In this paper, we
propose to learn representations of sports plays, which are quite
different from those targeted in previous studies. Moreover, to ac-
celerate the training of our model play2vec, we design a method to
generate training data with hard negative sampling. We also use a
grid structure that is robust to noise and varying sampling rates.

3 PROBLEM DEFINITION
We model a sports game by the movements of the objects involved
in the game (e.g., in a soccer game, the objects include 22 players

from two teams and also a ball). The movement of an object is
usually captured by sampling its locations at a certain frequency
with tracking technologies such as those based on GPS devices. As
a result, the movement of an object corresponds to a sequence of
time-stamped locations, which is called a trajectory. A trajectory
has its form of (x1,y1, t1), (x2,y2, t2), ..., where (xi , yi) is the ith

location and ti is the time stamp of the ith location. Therefore, a
play corresponds to a set of multiple trajectories.

A play corresponds to a fragment of a game and has its duration
varying from seconds to minutes, depending on users’ needs. The
concept of play provides the flexibility of searching finer-grained
games (i.e., game fragments). Same as a game, a play corresponds
to a set of multiple trajectories (with shorter lengths).

Given a database of plays D, we aim to learn a vector repre-
sentation v ∈ Rd for each play P ∈ D in a d-dimensional space
such that the similarities among plays are well captured by the
Euclidean distances in the d-dimensional vector space, i.e., for any
two plays, if they are similar, the distance between their vectors
would be small.

The notations that are frequently used throughout the paper are
given in Table 1.

4 METHODOLOGY
In this part, we introduce our deep learning method, play2vec, for
learning vector presentations of plays. The core idea is that we
break each play into a sequence of non-overlapping segments of
a fixed duration, each called a play segment, and then design an
encoder-decoder model to extract the features from the sequence
as a vector. Specifically, our method first builds a corpus V based
on all play segments (Section 4.1), then adopts the Skip-Gram with
Negative Sampling (SGNS)model [17] for learning distributed repre-
sentations of the tokens inV (Section 4.2), and eventually glues all
distributed representations of the play segments in a play, yielding
a vector representationv using the Denoising Sequential Encoder-
Decoder (DSED) model that is designed in this paper (Section 4.3).

4.1 Building a Sports Corpus
First, we introduce a process of mapping a play segment to a binary
matrix with the help of a grid. Specifically, we divide the pitch into
a grid with equal cell size γ , for which we would have a correspond-
ing matrix called segment matrix, i.e., each cell in the grid has a
corresponding entry in the matrix. Given a play segment, which
consists of a set of trajectories, we set to 1 all those entries whose
corresponding cells are traveled through by the trajectories and 0
the remaining entries. An example is shown in Figure 1 for illustra-
tion. Note that in this example, the 5 × 7 grid map is determined by
the cell size, which is set empirically in Section 5.2.4.

Since each segment matrix has binary values only, the number of
possible segment matrices is limited. A simple strategy is to create
one unique token for each possible segment matrix. Nevertheless,
with this strategy, the resulting corpus could be big, which may
affect the effectiveness of the representation learning afterwards.
Thus, we propose to scan the segment matrices one by one and for
each segment matrix, we create a new token only if it is dissimilar
from those segment matrices that have been scanned to a certain
extent, where we use the Jaccard index for measuring the similarity

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(a) soccer pitch (b) segment matrixM

Figure 1: Mapping a play segment to a matrix. The soccer
pitch is divided into 5×7 gridmap. There are two trajectories
with the color red and blue in the soccer pitch.

Algorithm 1 Building the Corpus
Input: D: the database of plays; ϕ : Jaccard index threshold
Output: The sports corpus V
1: initialize V ← ∅; id ← 1;
2: for each play segment of a play in D do
3: M ← the segment matrix mapped from the play segment;
4: if |V | = 0 then
5: V ← V ∪ (M, Tid), id = id + 1;
6: end if
7: (M′, T′) ← argmax

(M′′,T′′)∈V
J(M,M′′);

8: if J(M,M′) > ϕ then
9: V ← V ∪ (M, T′);
10: else
11: V ← V ∪ (M, Tid); id = id + 1;
12: end if
13: end for

between two segment matricesM andM ′, which is defined as
follows.

J(M,M ′) :=
m11

m01 +m10 +m11
, (1)

wherem11 means the total number of attributes whereM andM ′
both have a value of 1, m01 (or m10) means the total number of
attributes whereM is 0 (or 1) andM ′ is 1 (or 0).

Algorithm 1 presents the steps of building sports corpus. It first
initializes two variables:V which is the target sports corpus and
id which is the index of tokens (line 1). It then has a for loop of
scanning the play segments (lines 2-13). Within the loop, it first
computes the segment matrix for the play segment currently being
processed (line 3). Then, it inserts the first segment matrix and
its corresponding token into V (lines 4-6). It then finds the pair
(M ′,T ′) such that M ′ is the most similar to M among those
maintained in V under the Jaccard index (line 7). If the similarity
is above a threshold ϕ,M is assigned with the same segment token
asM ′ (lines 8-9); otherwise,M is assigned with a new segment
token (lines 10-11).

4.2 Learning Distributed Representations
In this part, we introduce a method for embedding the play seg-
ments (or their corresponding tokens) asd ′-dimensional real-valued
vectors. Inspired by the success of word2vec techniques in natu-
ral language processing, we adopt the Skip-Gram with Negative
Sampling (SGNS) model for this task. The effectiveness of a SGNS
model depends on how good the context of a token is modeled. The
segment tokens occurring in the same context tend to have similar
sports scenes. Hence, we use the consecutive segment tokens after
and before a token as the forward-looking and backward-looking
context of the token, respectively.

In this part, we abuse the notation V to denote the set contain-
ing all segment tokens of the play segments involved in a database
of plays. Consider a play P which involves L play segments. Cor-
respondingly, there is a sequence of L segment tokens which we
assume are T1,T2, . . . ,TL . Then, them-size window context of a
segment token Tt (m + 1 ≤ t ≤ L −m), denoted by cm (Tt), corre-
sponds to < Tt−m, . . . ,Tt−1,Tt+1, . . . ,Tt+m >, where we say Tt is
a target segment token and each token in cm (Tt) a context segment
token. Note that a segment token could be a target one and also a
context one (with others as the target ones), i.e., a segment token
has two types of roles, namely a target segment token and a context
segment token. Given a target token T and a context token C, we
say the token-context pair (T , C) is positive if C ∈ cm (T) and neg-
ative otherwise. Considering that a segment token has two types of
role, we define for each segment token a vectorvT ∈ Rd

′

for cases
it corresponds to a target segment token and a vectorvC ∈ Rd

′

for
cases it corresponds to a context segment token, where d ′ is the
embedding dimension. We aim to learn these vectors such that we
could infer those context segment tokens from a target one with
the maximum probability.

We explain the training data and also the loss next. The training
data consists of a set of training samples. Each training sample
consists of one positive token-context pair (T , C) (i.e., C ∈ cm (T))
and k negative pairs (T i , C), where T i for i = 1, 2, ...,k is drawn
from a segment token distribution Q(T). Specifically, Q(T) is a
α-smoothed unigram distribution,

Q(T) :=
f (T)α∑

T′∈V f (T ′)α
, (2)

where α ∈ [0, 1] and f (T) is the frequency of the segment token
T appearing in the corpus.

The loss is explained as follows. For a token-context pair (T , C),
we model the probability that the pair is positive as σ

(
(vT)

T ·vC

)
(i.e., a sigmoid function is used with its input as the dot product
between the vectors of the segment tokens) and the pair is negative
as 1 − σ

(
(vT)

T · vC

)
. We then define the loss over one training

sample using negative log probabilities as follows.

L(T , C,T i) := − logσ
(
(vT)

T ·vC

)
−

k∑
i=1

logσ
(
− (vTi)

T ·vC

)
,

(3)
where (T , C) is the positive token-context pair and (T i , C), for
1 ≤ i ≤ k , are the k negative pairs in the training sample. The
overall loss function L is defined by aggregating the losses on all
training samples.

The SGNS of the segmentation tokens yields a distributed rep-
resentationvT for each T ∈ V. The learning algorithm is shown
in Algorithm 2. The training starts from a random vector as the
initialized embedding, and it will be continuously updated by the
stochastic gradient descent to push the target segment token close
to the context in the positive pairs and away from the context in
the negative pairs.

Algorithm 2 Learning Distributed Representation
Input: V: sports corpus; d ′: the embedding dimension;m: context window size; k :

the number of negative samples; α : learning rate
Output: The learned distributed representationvT for T ∈ V
1: while improvement on validation set do
2: for each T ∈ V do
3: sample a positive pair (T, C), where C ∈ cm (T) is picked randomly;
4: sample k negative pairs (Ti , C), where Ti ∼ Q(T), 1 ≤ i ≤ k ;
5: vT ← vT − α∇vT L(T, C, T

i);
6: end for
7: end while

4.3 Bottom-up Gluing
In this section, we aim to glue the distributed representations of the
segment tokens up together to achieve a comprehensive represen-
tation of the play. We propose a new algorithm framework called
the Denoising Sequential Encoder-Decoder (DSED). The intuition
is that we try to maximize the probability of recovering the most
likely real (or clean) tokens from the corrupted initial inputs. For a
given play segment and its corresponding token T , we generate a
corrupted version of the token, denoted by T̃ , as follows. We scan
the locations of the trajectories contained in the play segment time
stamp by time stamp, and at each time stamp, we keep the locations
with a pre-set probability (and drop the locations with one minus
the probability and continue to the next time stamp) and in the
case we keep the locations, we sample for each location a noise
following a normal distribution N(0, 1) and add the noise into the
location. We then get a new set of tokens based on the corrupted
trajectories.

The architecture of the model is presented in Figure 2. We define
the encoding hidden representation henct at each time step t , i.e.
henct := LSTMenc

θ (v
T̃t
,henct−1). The encoding hidden vector at the

last time step henc
last

denotes the target representationv and is used
to be the hidden vector of the decoder at the first step, i.e. hdec0 :=
henc
last
. And EOS is the special token that signals the first step input

of the decoding. Also, the decoding hidden representation hdect
is computed based on the distributed representation of the clean
tokenvTt−1 and the hidden vectorh

dec
t−1 from the previous time step,

i.e., hdect := LSTMdec
θ ′ (vTt−1 ,h

dec
t−1). Note that LSTM is chosen as

the computational unit in our model since some existing studies
show that LSTM outperforms GRU in tasks requiring modeling
long-distance relations [7].

Eventually, we predictvpred
Tt

by the softmax function from the
decoding hidden representation hdect at each time step t ,

v
pred
Tt

:=
exp(WT · hdect + b)∑

v ∈V exp(WT
v · h

dec
t + bv)

, (4)

whereW ∈ R |h
dec
t |× |V | , b ∈ R |V | ,Wv ∈ R

|hdect | and bv ∈ R are
the weights and bias represented by η, and softmax is the activation
function. We define the loss function L(vT ,v

pred
T
) as the average

sequence cross-entropy,

L(vT ,v
pred
T
) :=

1
L
·

L∑
i=1
H

(
vTi ,v

pred
Ti

)
, (5)

LSTM
enc

θ
LSTM

enc

θ
LSTM

enc

θ
LSTM

dec

θ
′ LSTM

dec

θ
′ LSTM

dec

θ
′

Skip-Gram Model with Negative Sampling

 ̃
t−2 ̃

t−1 ̃
t

v

̃
t−2

v

̃
t−1

v

̃
t

h
enc
t−2

h
enc
t−1 h

dec
0

h
dec
t−2

h
dec
t−1

EOS vt−2
vt−1

 Prediction Module

v
pred

t−2

v
pred

t−1

Encoder Decoder

h
dec
t

v
pred

t

Figure 2: Denoising Sequential Encoder-Decoder Model. Take the
sequence of the corrupted tokens < ˜Tt−2, ˜Tt−1, T̃t > as an example,
where EOS is a special token indicating the end of the input.

Algorithm 3 Denoising Sequential Encoder-Decoder (DSED)
Model
Input: D: the database of plays need to be embedded; d : the embedding dimension

of each play; encoding function LSTMenc
θ and decoding function LSTMdec

θ ′ ; α :
learning rate

Output: A trained DSED model
1: call Algorithm 1 to build the corpus V;
2: repeat
3: get < T1, . . . , TL > from V for a play P ∈ D;
4: get corrupted version < T̃1, . . . , T̃L >;
5: call Algorithm 2 to get distributed representationsv

T̃
andvT ;

6: get henc
l ast

(denoted asv) and hdec
l ast

from LSTMenc
θ and LSTMdec

θ ′ ;

7: (θ , θ ′, η) ← (θ , θ ′, η) − α∇(θ ,θ ′,η)L(vT ,v
pred
T

);
8: until No improvement on validation set

whereH is the cross-entropy operator. Parameter θ of the encoding
function LSTMenc

θ , θ ′ of the decoding function LSTMdec
θ ′ and η are

trained to minimize loss L(vT ,v
pred
T
) over a training set with the

Adam stochastic gradient descent method.
Algorithm 3 presents the DSED model. It first calls Algorithm 1

to build the sports corpus V, which contains segment tokens T
(line 1). During the iterative training process (lines 2-8), it first maps
the plays P to a sequence of segment tokens < T1,T2, . . . ,TL > of
length L (line 3). Then, it constructs for each token Ti a corrupted
version T̃i (line 4) and call Algorithm 2 to get distributed represen-
tationsvTi andv T̃i for Ti and T̃i , respectively (line 5). Next, it gets

the reconstruction pairs (vpred
T
,vT), which are computed by the

encoder and decoder components of the learning model and uses
an optimizer such as Adam stochastic gradient descent to optimize
the parameters (lines 6-7).

4.4 Complexity Analysis
The time complexity for computing the similarity between two
plays consists of two parts, namely one for learning the repre-
sentations of the plays and the other for computing the distance
between the learned representations in the form of vectors in the
d-dimensional space. The former costs O(n) time, where n is the
length of the longest trajectory involved in the plays, andwe explain
as follows: (1) it takesO(n) to convert a query play to a sequence of
L segment matrices; (2) it takes O(|V |L) time to map the segment
matrices to their corresponding segment tokens; (3) it takes O(L)
to map the segment tokens to their corresponding vectors; and (4)

Table 2: Dataset statistics.

Statistics Frequency
#Sequences 7500
Playing Time 45 games
Data Points 30.4M

X-axis [−52.5meters,+52.5meters]
Y-axis [−34meters,+34meters]

Sampling Rate 10Hz

it takes roughly O(n) time to fed the vectors to the DSED model
and obtains the target vector representation of the play. Since |V |
could be regarded as a constant and L is bounded by n, we know
this process takes O(n) time. And the latter costs O(d) which is
obvious. Hence, the overall time complexity is O(n + d).

5 EXPERIMENTS
5.1 Experimental Setup
Dataset. Our experiments are conducted on real-world soccer
player tracking data 1. The data consist of 7500 sequences and
each sequence contains a segment of tracking data corresponding
to actual game from a recent professional soccer league, totaling
approximately 45 games worth of playing time and over 30 million
data points, with redundant and “dead” situations removed. Each
segment consists of the tracking data of three parts: 11 defense play-
ers, 11 attacking players and a ball. Each part contains (x,y) coordi-
nates obtained at a sampling frequency of 10Hz. More specifically,
the coordinates generally belong to the [−52.5meters,+52.5meters]
range along the x-axis, and [−34meters, +34meters] range along
the y-axis, with the very center of the pitch being (0, 0). Table 2
presents the statistics of the dataset.
Baselines. To evaluate the effectiveness and efficiency of our deep
representation learning method (called play2vec), we compare it
with the following baseline similarity methods.
• DTW [29] and Frechet [1]. DTW and Frechet are two of the
most widely adopted trajectory similarity measures in temporal
sequence analyses. In particular, the Frechet is a metric-based dis-
tance, namely the distance is symmetric and satisfies the triangle
inequality. However, the DTW distance is not a metric because it
doesn’t satisfy the triangle inequality. To measure the similarity
between the two plays, we consider an agent-to-agent trajectory
comparison method. We do this by first calculating the cost matrix
between the trajectories of two plays based on the DTWand Frechet
distance, respectively and then computing the optimal assignment
using the Hungarian algorithm [12].
• Chalkboard [24]. This method is the state-of-the-art method pro-
posed for sports play retrieval and overcomes the exhaustive com-
paring problem of an agent-to-agent method by using a role-based
representation to enable fast alignment of trajectories. Addition-
ally, effective templating and hashing techniques are employed to
support users’ queries at interactive speeds.
• EMDT [11]. EMDT is proposed to study the similarity of trajectory
sets over the road network and defines a novel similarity measure
by borrowing the idea of the Earth Mover’s Distance. However,

1Data Source: STATS, copyright 2019 (https://www.stats.com/artificial-intelligence)

their problem scenario is on the road network and the implemen-
tation of EMDT partly requires an map matching algorithm. We
adapt this method by regarding the center point of each cell as
a node on a road network and mapping the sample points of all
trajectories to their nearest center points.
Parameter Setting. The default size of cells is 3 meters and short
duration of segments is 1 second in the experiments. After build-
ing a sports corpus via the Jaccard index (the threshold is 0.3), we
got 50,465 unique tokens for our dataset. We use a 2-layer LSTM
as the computational unit in LSTM-Encoder. The representation
dimension of the learned segment tokens and plays are set to 20
and 50 respectively. The context window size in the distributed
representation learning is set to 5. The α-smoother is set to 3/4
following the negative sampling in word2vec. Additionally, in the
training process, we train our model on 5k generated plays with
randomly noise and dropping rate and adopt Adam stochastic gradi-
ent descent with an initial learning rate of 0.01. In order to avoid the
gradient vanishing problem, a maximum gradient norm constraint
is used and set to 5. For the parameters of baselines, we follow their
strategies described in the original papers.
Evaluation Platform.All the methods are implemented in Python
3.6. The implementation of play2vec is based on tensorflow 1.8.0,
which is available at https://github.com/zhengwang125/play2vec/.
The experiments are conducted on a machine with Intel(R) Xeon(R)
CPU E5-1620 v2 @3.70GHz 16.0GB RAM and one Nvidia GeForce
GTX 1070 GPU.

5.2 Effectiveness Evaluation
Overall effectiveness.We first study the effectiveness of play2vec.
The lack of ground-truth makes it a challenging problem to eval-
uate the accuracy. To overcome it, we follow three recent stud-
ies [14, 21, 26] which propose to quantify the accuracy of trajectory
similarity with Self-similarity, Cross-similarity and KNN-similarity
comparisons, respectively. There are two frequently used param-
eters: noise rate (radius is set to 1 meter.) and dropping rate with
varying values from 0.2 to 0.6. The two parameters are to measure
the probabilities of adding noise or dropping sampling points of
each trajectory in a play, respectively.

5.2.1 Self-similarity Comparison. In this experiment, we randomly
choose 50 plays to form the query set (denoted asQ) and 1000 plays
as the target database (denoted as D) from the dataset. For each
play P ∈ Q , we create two sub-plays by randomly sampling 20%
points for each trajectory in the play, denoted as Pa and Pb , and
we use them to construct two datasets Qa = {Pa } and Qb = {Pb }.
Similarly, we get Da and Db from the target database D. Then for
each query Pa ∈ Qa , we compute the rank of Pb in the database
Qb ∪ Db using different methods. Ideally, Pb should be ranked
at the top since Pa and Pb are generated from the same play P .
To evaluate the robustness of different approaches to noise, we
consider introducing two types of noises. First, we corrupt each
trajectory of each play in both Qa and Qb ∪ Db as follows: We
randomly sample a fraction of the points (denoted by noise rate
r1) and for each sample point we distort the coordinate values by
adding Gaussian noises with a standard normal distribution. We
vary r1 from 0.2 to 0.6 and report the mean rank of the queries in
Table 3. Second, we randomly drop a fraction of points from each

Table 3: Self-similarity of varying noise rate.

noise rate 0.2 0.3 0.4 0.5 0.6
DTW 24.80 33.80 44.00 73.20 90.20
Frechet 79.40 80.60 82.80 83.00 83.60

Chalkboard 77.20 77.80 78.20 78.40 78.80
EMDT 215.00 220.80 236.20 255.20 299.40
play2vec 14.20 20.40 23.80 25.30 28.20

Table 4: Self-similarity of varying dropping rate.

dropping rate 0.2 0.3 0.4 0.5 0.6
DTW 115.60 118.20 124.80 129.00 130.80
Frechet 144.60 155.20 176.80 185.60 202.00

Chalkboard 57.80 60.40 62.40 68.20 69.60
EMDT 56.20 70.40 70.60 91.40 96.40
play2vec 26.24 29.50 39.74 50.20 54.00

Table 5: Cross-similarity of varying noise rate.

noise rate 0.2 0.3 0.4 0.5 0.6
DTW 0.093 0.111 0.113 0.114 0.117
Frechet 0.084 0.101 0.102 0.105 0.116

Chalkboard 0.074 0.082 0.088 0.093 0.112
EMDT 0.583 0.629 0.706 0.819 0.891
play2vec 0.034 0.048 0.086 0.093 0.111

Table 6: Cross-similarity of varying dropping rate.

dropping rate 0.2 0.3 0.4 0.5 0.6
DTW 0.198 0.290 0.397 0.500 0.588
Frechet 0.251 0.253 0.254 0.256 0.257

Chalkboard 0.197 0.299 0.397 0.490 0.600
EMDT 0.295 0.302 0.303 0.304 0.322
play2vec 0.002 0.008 0.009 0.017 0.032

trajectory of each play in both Qa and Qb ∪ Db . We vary dropping
rate r2 from 0.2 to 0.6 and report the mean rank of the queries in
Table 4. Note that the mean rank in self-similarity evaluation is a
rank-based metric defined as 1

|Qa |

∑
Pa rank(Pb), where rank(Pb)

denotes the rank of Pb inQb ∪Db for a query Pa ∈ Qa . We observe
that play2vec consistently outperforms the other methods by a large
margin as we vary the two types of noise. We also observe that most
of the methods are not very sensitive to the noise rate except that
DTW and EMDT degrade quickly when we increase the noise rate
to 0.5. This is because the matching cost of DTW is determined by
the pairwise point-matching and errors will be accumulated with
noises. However, Frechet maintains an infimum of the matching
cost that is robust to noise changes. With regard to Chalkboard, it
splits trajectories into overlapping segments, which can alleviate
the noise interruption to some degree. Moreover, with the increase
of the noise rate, the gap between EMDT and other methods grows
and the mean rank of EMDT is consistently very large. This is
because after adding noise, the cell centers corresponding to Pa
and Pb are very different, even if they are sampled from the same
play. When we vary the dropping rate, the mean ranks of DTW and
Frechet are significantly larger than other methods. This implies
that the pairwise point-matching methods based on agent-to-agent
alignment may not be able to handle the case when sampling rate
is low.

5.2.2 Cross-similarity Comparison. Agood similaritymeasure should
preserve the distance between two plays regardless of the sam-
pling rate or noise interference. We use a metric from the liter-
atures [14, 26] to evaluate the effectiveness for Cross-similarity
comparison, namely Cross Distance Deviation (CDD) as defined
below.

CDD(Pa, Pb) =
|S(Pa′(r), Pb′(r)) − S(Pa, Pb)|

S(Pa, Pb)
, (6)

where S(·, ·) is a similarity measure such as DTW or Frechet; Pa and
Pb are two original plays; Pa′(r) and Pb′(r) are their variants that
are obtained by randomly dropping points (or adding noise) with
rate r . A small CDD value indicates that an algorithm is robust and
is able to preserve the original distance well. In this experiment,

we randomly select 1,000 play pairs (Pa, Pb) from the dataset. The
average CDD results are reported in Table 5 and Table 6. We observe
that play2vec outperforms other baselines consistently for different
noise and dropping rates. Note that play2vec is very close to the
ground truth over various dropping rates because a cell of the grid
maps is considered occupied only if one sample point falls in the
cell. Therefore, play2vec can effectively handle the low sampling
issue of data.

5.2.3 KNN-similarity Comparison. In this experiment, we study
the accuracy and robustness of play2vec and the other baselines for
KNN-similarity search on plays when we vary the dropping rate
or noise rate. To circumvent the issue of lack of ground-truth, we
follow the experimental methodology that is proposed by existing
studies [14, 21]: We first randomly select 20 plays as the query
set and 500 plays as the target database, and for each query we
employ each method to find its Top-K plays as the ground-truth
of each method; Then we corrupt each play in the target database
by randomly dropping points or adding noise, and retrieve the
Top-K plays from the corrupted database; Finally, we compare
the retrieved Top-K plays against the ground-truth to compute
the precision, i.e., the proportion of true Top-K plays among the
retrieved Top-K plays. We vary the value of K by 20, 30, 40, and
vary the dropping rate or noise rate from 0.2 to 0.6. The average
precision results are reported in Figure 3. We observe that play2vec
performs the best consistently. As expected, the precision of all
methods decreases when the noise or dropping rate increases. We
observe similar trends for all methods over different K values. The
precision of DTW drops rapidly when the dropping rate is more
than 0.5. EMDT performs the worst when we inject noise into the
target database due to the same reason we analyzed for the Self-
similarity comparison experiment. Additionally, Frechet is more
robust than other baselines when we corrupt the target database
by dropping points.

5.2.4 Parameter Study. We next evaluate the effect of the cell size
on the effectiveness of play2vec. Intuitively, a small cell size pro-
vides a higher resolution of the sports scene, but it also generates
more tokens, which lead to higher training complexity and reduce

0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Noise rate

P
re

ci
si

on
 k

=
20

DTW
Frechet
Chalkboard

EMDT

play2vec

0.2 0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise rate

P
re

ci
si

on
 k

=
30

DTW
Frechet
Chalkboard

EMDT

play2vec

0.2 0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise rate

P
re

ci
si

on
 k

=
40

DTW
Frechet
Chalkboard

EMDT

play2vec

(a) Noise (K = 20) (b) Noise (K = 30) (c) Noise (K = 40)

0.2 0.3 0.4 0.5 0.6

0.7

0.75

0.8

0.85

0.9

0.95

1

Dropping rate

P
re

ci
si

on
 k

=
20

DTW
Frechet
Chalkboard

EMDT

play2vec

0.2 0.3 0.4 0.5 0.6
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Dropping rate

P
re

ci
si

on
 k

=
30

DTW
Frechet
Chalkboard

EMDT

play2vec

0.2 0.3 0.4 0.5 0.6
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Dropping rate

P
re

ci
si

on
 k

=
40

DTW

Frechet

Chalkboard

EMDT

play2vec

(d) Dropping (K = 20) (e) Dropping (K = 30) (e) Dropping (K = 40)

Figure 3: KNN results when varying the noise and dropping rate from 0.2 to 0.6 for K = 20, 30, 40.

robustness. In Table 7, we report the performance in answering
Self-similarity, Cross-similarity and KNN-similarity, where rn and
rd are noise rate and dropping rate, respectively. We observe that
the performance becomes better as the cell size grows from 1m
to 3m, and drops for Cross-similarity and KNN similarity when
the cell size becomes 4m. With the smallest cell size (1m) play2vec
performs the worst. This is probably because the high model com-
plexity makes it difficult to train and this is in line with our intuition.
Therefore, we set the cell size at 3 meters for the other experiments
because it offers a better robustness.

5.3 Efficiency Evaluation
This set of experiments is to evaluate the efficiency of different
methods for the sports play retrieval. Figure 4 shows the average
cost of computing the similarity between a query play and the
plays when we vary the size of the target database. Note that the
y-axis is in logarithmic scale. Clearly, EMDT performs extremely
slow because the overall time cost of the Earth Mover’s Distance
is super-cubic to the number of the cells over a soccer pitch [22].
DTW and Frechet have similar running time because they are pair-
wise point-matching methods, which has quadratic computational
complexity. Chalkboard is the most efficient algorithm among the
baselines because it adopts a fast role-based representation to avoid
exhaustively comparing computation in agent-to-agent alignment.
Note that in Chalkboard, we perform offline preprocessing and do
not count the time for fair comparison. play2vec performs the best
among all methods and is over an order of magnitude faster than
the most efficient baseline Chalkboard. This is because play2vec
takes linear time to retrieve similar plays as discussed in Section 4.4.
We also notice that play2vec scales linearly with the database size
and the disparity between them increases as the size of the target
database grows.

5.4 User Study
Since Chalkboard performs the best among all the baselines, and
is dedicated for similar play retrieval, we compare play2vec with
Chalkboard for play retrieval via a user study. We randomly select
10 plays as the query set and for each query we employ play2vec
and Chalkboard to retrieve Top-1 play from the target database,
respectively. We recruited seven volunteers with strong soccer
background to annotate the relevance of retrieved plays. We first
spent 10 minutes to get everyone understand the images in Figure 6.
Then, for each of the 10 queries each volunteer specifies the most
relevant result between the Top-1 result retrieved by play2vec and
the Top-1 result retrieved by Chalkboard. Note that volunteers do
not know which result is from which method. We show the scores
of the 10 queries for both methods in Figure 5. We observe that
play2vec performs much better than Chalkboard for 8 out of the 10
queries. Overall, play2vec gets 82.86% votes (over 70 votes) while
Chalkboard only gets 7.14% votes. We illustrate the results by show-
ing the Top-5 results of play2vec and Chalkboard, respectively, on
query Q1 in Figure 7. We observe that Q1 is a classical “lofted pass”
tactics in a soccer match. We find that the Top-1 result of play2vec
matches the query very well and Top 2-5 results also maintain a
high consistency between results and the query. However, Chalk-
board fails to return relevant results, which is due to the imperfect
alignment as discussed in Section 1.

6 CONCLUSION
In this paper, we study the problem of sports play retrieval and
present the first deep learning based method for computing the
similarity between two sports plays. Inspired by the success of
modeling word similarity, we extend the Skip-Gram with Negative
Sampling (SGNS) model and develop a new Denoising Sequential

Table 7: The influence of the cell size.

cell size 1m 2m 3m 4m
#tokens 87382 67681 50465 22570

evaluation Self Cross KNN Self Cross KNN Self Cross KNN Self Cross KNN
rn = 0.5 80.67 0.248 0.68 30.60 0.178 0.87 25.30 0.093 0.95 25.00 0.101 0.94
rd = 0.5 72.50 0.198 0.70 69.40 0.087 0.90 54.00 0.017 0.96 53.20 0.022 0.94

500 1000 3000 5000 7000

10
1

10
2

10
3

10
4

10
5

Database size

T
im

e
(s

)

DTW
Frechet
Chalkboard

EMDT

play2vec

Figure 4: Efficiency. Figure 5: User Study.

Encoder-Decoder (DSED) framework to learn consistent represen-
tations. Our solution is robust to the non-uniform sampling rates
and noises and only takes a linear time to compute the similarity.
Also, we evaluate experiments on real-world soccer match data
and find that it achieves better effectiveness and efficiency than
the existing methods. In the future, we plan to develop indexing
techniques like Locality-Sensitive Hashing to further accelerate the
retrieval for large-scale datasets.

Acknowledgments. This work is supported in part by aMOE Tier-
2 grant MOE2016-T2-1-137, a MOE Tier-1 grant RG31/17 and NTU
SUG grant M4082302.020. The authors would also like to thank
Tobias Emrich, Matthias Schubert, and Deepak Padmanabhan for
some initial discussions.

REFERENCES
[1] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between

two polygonal curves. International Journal of Computational Geometry & Appli-
cations 5, 01n02 (1995), 75–91.

[2] Raquel Aoki, Renato M Assuncao, and Pedro OS Vaz de Melo. 2017. Luck is
hard to beat: The difficulty of sports prediction. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
1367–1376.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[4] Alina Bialkowski, Patrick Lucey, Peter Carr, Yisong Yue, Sridha Sridharan, and
Iain Matthews. 2014. Large-scale analysis of soccer matches using spatiotemporal
tracking data. In Data Mining (ICDM), 2014 IEEE International Conference on. IEEE,
725–730.

[5] Lei Chen and Raymond Ng. 2004. On the marriage of lp-norms and edit distance.
In Proceedings of the Thirtieth international conference on Very large data bases-
Volume 30. VLDB Endowment, 792–803.

[6] Lei Chen, M Tamer Özsu, and Vincent Oria. 2005. Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. ACM, 491–502.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[8] Tom Decroos, Jan Van Haaren, and Jesse Davis. 2018. Automatic Discovery of
Tactics in Spatio-Temporal Soccer Match Data. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,
223–232.

[9] Mingyang Di, Diego Klabjan, Long Sha, and Patrick Lucey. 2018. Large-Scale
Adversarial Sports Play Retrieval with Learning to Rank. ACM Transactions on
Knowledge Discovery from Data (TKDD) 12, 6 (2018), 69.

[10] Joachim Gudmundsson and Michael Horton. 2017. Spatio-temporal analysis of
team sports. ACM Computing Surveys (CSUR) 50, 2 (2017), 22.

[11] Dan He, Boyu Ruan, Bolong Zheng, and Xiaofang Zhou. 2018. Trajectory Set
Similarity Measure: An EMD-Based Approach. 28–40. https://doi.org/10.1007/978-
3-319-92013-9_3

[12] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[13] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International Conference on Machine Learning. 1188–1196.

[14] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. 2018. Deep
representation learning for trajectory similarity computation. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 617–628.

[15] Tie-Yan Liu, Wei-Ying Ma, and Hong-Jiang Zhang. 2005. Effective feature ex-
traction for play detection in american football video. In Multimedia Modelling
Conference, 2005. MMM 2005. Proceedings of the 11th International. IEEE, 164–171.

[16] Patrick Lucey, Alina Bialkowski, Peter Carr, Stuart Morgan, Iain Matthews, and
Yaser Sheikh. 2013. Representing and discovering adversarial team behaviors
using player roles. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2706–2713.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[18] Andrew Miller, Luke Bornn, Ryan Adams, and Kirk Goldsberry. 2014. Factor-
ized point process intensities: A spatial analysis of professional basketball. In
International Conference on Machine Learning. 235–243.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[20] Lukas Probst, Ihab Al Kabary, Rufus Lobo, Fabian Rauschenbach, Heiko Schuldt,
Philipp Seidenschwarz, and Martin Rumo. 2018. SportSense: User Interface for
Sketch-Based Spatio-Temporal Team Sports Video Scene Retrieval. In Proceedings
of the first workshop on User Interface for Spatial and Temporal Data Analysis
(UISTDA’18). CEUR-WS.

[21] Sayan Ranu, P Deepak, Aditya D Telang, Prasad Deshpande, Sriram Raghavan,
et al. 2015. Indexing and matching trajectories under inconsistent sampling
rates. In 2015 IEEE 31st International Conference on Data Engineering (ICDE). IEEE,
999–1010.

[22] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 2000. The earth mover’s
distance as a metric for image retrieval. International journal of computer vision
40, 2 (2000), 99–121.

[23] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term mem-
ory recurrent neural network architectures for large scale acoustic modeling. In
Fifteenth annual conference of the international speech communication association.

[24] Long Sha, Patrick Lucey, Yisong Yue, Peter Carr, Charlie Rohlf, and Iain Matthews.
2016. Chalkboarding: A new spatiotemporal query paradigm for sports play
retrieval. In Proceedings of the 21st International Conference on Intelligent User
Interfaces. ACM, 336–347.

[25] Long Sha, Patrick Lucey, Yisong Yue, Xinyu Wei, Jennifer Hobbs, Charlie Rohlf,
and Sridha Sridharan. 2018. Interactive Sports Analytics: An Intelligent Interface
for Utilizing Trajectories for Interactive Sports Play Retrieval and Analytics. ACM
Transactions on Computer-Human Interaction (TOCHI) 25, 2 (2018), 13.

[26] Han Su, Kai Zheng, Haozhou Wang, Jiamin Huang, and Xiaofang Zhou. 2013.
Calibrating trajectory data for similarity-based analysis. In Proceedings of the 2013
ACM SIGMOD international conference on management of data. ACM, 833–844.

[27] Zheng Wang, Ce Ju, Gao Cong, and Cheng Long. 2018. Representation Learning
for Spatial Graphs. arXiv preprint arXiv:1812.06668 (2018).

[28] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory
Similarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Ap-
proach. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE.

[29] Byoung-Kee Yi, HV Jagadish, and Christos Faloutsos. 1998. Efficient retrieval of
similar time sequences under time warping. In Data Engineering, 1998. Proceed-
ings., 14th International Conference on. IEEE, 201–208.

[30] Yisong Yue, Patrick Lucey, Peter Carr, Alina Bialkowski, and Iain Matthews. 2014.
Learning fine-grained spatial models for dynamic sports play prediction. In Data
Mining (ICDM), 2014 IEEE International Conference on. IEEE, 670–679.

https://doi.org/10.1007/978-3-319-92013-9_3
https://doi.org/10.1007/978-3-319-92013-9_3

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 1 Play length: 17.0s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 6 Play length: 14.2s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 2774 Pla length: 48.0s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 2793 Pla length: 12.9s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 3582 Play length: 14.7s
defense
attacking
ball

Q1 Q2 Q3 Q4 Q5

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 3116 Play length: 16.6s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30
Y-
ax

is
Sequence id: 3367 Play length: 19.1s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5835 Play length: 16.2s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5902 Pla length: 13.1s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5200 Pla length: 18.3s
defense
attacking
ball

Q6 Q7 Q8 Q9 Q10
Figure 6: Ten queries which are used for user study. These trajectories cover a wide range of zones in the pitch. The small “x”
is the end point of the movement.

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 1538 Play length: 10.7s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5650 Pla length: 12.3s

defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 296 Play length: 11.7s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 2660 Play length: 16.3s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 7388 Play length: 9.5s
defense
attacking
ball

Chalkboard 1 (2/7) Chalkboard 2 Chalkboard 3 Chalkboard 4 Chalkboard 5

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 6416 Pla length: 17.1s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5650 Pla length: 12.3s

defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5712 Pla length: 20.0s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 1375 Play length: 16.6s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 3869 Play length: 16.7s
defense
attacking
ball

play2vec 1 (5/7) play2vec 2 play2vec 3 play2vec 4 play2vec 5
Figure 7: A retrieval example for Q1 of using two methods. The Top-5 results (from left to right) returned by the Chalkboard
and play2vec. (2/7) means the 2 participants support this result in 7 participants.

SUPPLEMENTAL
Here, we show that the queries for user study in Figures 6 and
Top-5 results of query Q1 are used for case study in Figure 7. More

details are described in subsection 5.4. Figure 8 and Figure 9 show
the Top-1 results of the Chalkboard and play2vec for Q2 to Q10.

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 4059 Pla length: 5.1s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 3890 Play length: 26.1s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 6040 Play length: 5.7s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 1405 Pla length: 5.7s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 5489 Play length: 7.0s
defense
attacking
ball

Chalkboard (0/7) Chalkboard (1/7) Chalkboard (4/7) Chalkboard (1/7) Chalkboard (0/7)

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 2100 Play length: 17.4s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30
Y-
ax

is
Sequence id: 164 Pla length: 65.2s

defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 3640 Play length: 18.9s

defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5954 Pla length: 19.0s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 6616 Play length: 11.4s
defense
attacking
ball

play2vec (7/7) play2vec (6/7) play2vec (3/7) play2vec (6/7) play2vec (7/7)
Figure 8: Top-1 results for Q2-Q6 (from left to right).

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 2381 Pla length: 6.6s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 5096 Play length: 8.5s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30
Y-
ax

is
Sequence id: 112 Pla length: 6.5s

defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 3928 Play length: 5.2s
defense
attacking
ball

Chalkboard (0/7) Chalkboard (0/7) Chalkboard (4/7) Chalkboard (0/7)

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax
is

Sequence id: 5739 Play length: 16.5s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 3945 Play length: 13.7s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 7484 Play length: 16.0s
defense
attacking
ball

−40 −20 0 20 40
X-axis

−30

−20

−10

0

10

20

30

Y-
ax

is

Sequence id: 5750 Pla length: 17.5s
defense
attacking
ball

play2vec (7/7) play2vec (7/7) play2vec (3/7) play2vec (7/7)
Figure 9: Top-1 results for Q7-Q10 (from left to right).

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Sports Data Analytics
	2.2 Measuring Trajectory Similarity
	2.3 Representation Learning

	3 PROBLEM DEFINITION
	4 METHODOLOGY
	4.1 Building a Sports Corpus
	4.2 Learning Distributed Representations
	4.3 Bottom-up Gluing
	4.4 Complexity Analysis

	5 EXPERIMENTS
	5.1 Experimental Setup
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation
	5.4 User Study

	6 CONCLUSION
	References

